Thi Thu Thao Bui, Quoc Vinh Tran, Thi Ngoc Ha Vo, Hong Khanh Do, DongQuy Hoang, Le Thai Duy, Thanh Tam Nguyen, Vinh Quang Dang, Cong Khanh Tran
{"title":"Surface properties-dependent antifungal efficiency of Ag/SiO2 nanocomposites","authors":"Thi Thu Thao Bui, Quoc Vinh Tran, Thi Ngoc Ha Vo, Hong Khanh Do, DongQuy Hoang, Le Thai Duy, Thanh Tam Nguyen, Vinh Quang Dang, Cong Khanh Tran","doi":"10.1007/s11051-024-06190-1","DOIUrl":null,"url":null,"abstract":"<div><p>The production of silver nanoparticles (Ag NPs) is important for antibacterial and antifungal applications. Many studies utilized natural resources (e.g., biopolymers and rice husk silica) for Ag NPs’ synthesis and stabilization, but few of them reported the effect of surface charge on the products’ antifungal performance. This study uses biopolymers (i.e., chitosan (CTS) and carboxymethyl cellulose (CMC)) to synthesize Ag NPs and investigate their impact on Ag NPs morphologies, surface charge, and antifungal properties. Two functional nanocomposites (NCs) based on Ag NPs were developed via a chemical method using either (i) CTS or CMC as a stabilizing agent and (ii) rice husk silica as a supported material. Both stabilizers produce well-dispersed Ag NPs on the silica surface, with CTS-stabilized NCs showing a positive surface charge (51.1 mV) and CMC-stabilized NCs exhibiting a negative surface charge (− 64.1 mV). Antifungal experiments revealed that both NCs effectively inhibited the mycelial growth of <i>P. palmivora</i> and <i>P. oryzae</i>. The positively charged NC exhibited the strongest activity against <i>P. palmivora</i>, whereas the negatively charged NC was the most effective against <i>P. oryzae</i>. These results emphasize the benefit of using stabilizing agents to boost the antifungal performance of Ag NPs.</p></div>","PeriodicalId":653,"journal":{"name":"Journal of Nanoparticle Research","volume":"26 12","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanoparticle Research","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11051-024-06190-1","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The production of silver nanoparticles (Ag NPs) is important for antibacterial and antifungal applications. Many studies utilized natural resources (e.g., biopolymers and rice husk silica) for Ag NPs’ synthesis and stabilization, but few of them reported the effect of surface charge on the products’ antifungal performance. This study uses biopolymers (i.e., chitosan (CTS) and carboxymethyl cellulose (CMC)) to synthesize Ag NPs and investigate their impact on Ag NPs morphologies, surface charge, and antifungal properties. Two functional nanocomposites (NCs) based on Ag NPs were developed via a chemical method using either (i) CTS or CMC as a stabilizing agent and (ii) rice husk silica as a supported material. Both stabilizers produce well-dispersed Ag NPs on the silica surface, with CTS-stabilized NCs showing a positive surface charge (51.1 mV) and CMC-stabilized NCs exhibiting a negative surface charge (− 64.1 mV). Antifungal experiments revealed that both NCs effectively inhibited the mycelial growth of P. palmivora and P. oryzae. The positively charged NC exhibited the strongest activity against P. palmivora, whereas the negatively charged NC was the most effective against P. oryzae. These results emphasize the benefit of using stabilizing agents to boost the antifungal performance of Ag NPs.
期刊介绍:
The objective of the Journal of Nanoparticle Research is to disseminate knowledge of the physical, chemical and biological phenomena and processes in structures that have at least one lengthscale ranging from molecular to approximately 100 nm (or submicron in some situations), and exhibit improved and novel properties that are a direct result of their small size.
Nanoparticle research is a key component of nanoscience, nanoengineering and nanotechnology.
The focus of the Journal is on the specific concepts, properties, phenomena, and processes related to particles, tubes, layers, macromolecules, clusters and other finite structures of the nanoscale size range. Synthesis, assembly, transport, reactivity, and stability of such structures are considered. Development of in-situ and ex-situ instrumentation for characterization of nanoparticles and their interfaces should be based on new principles for probing properties and phenomena not well understood at the nanometer scale. Modeling and simulation may include atom-based quantum mechanics; molecular dynamics; single-particle, multi-body and continuum based models; fractals; other methods suitable for modeling particle synthesis, assembling and interaction processes. Realization and application of systems, structures and devices with novel functions obtained via precursor nanoparticles is emphasized. Approaches may include gas-, liquid-, solid-, and vacuum-based processes, size reduction, chemical- and bio-self assembly. Contributions include utilization of nanoparticle systems for enhancing a phenomenon or process and particle assembling into hierarchical structures, as well as formulation and the administration of drugs. Synergistic approaches originating from different disciplines and technologies, and interaction between the research providers and users in this field, are encouraged.