Synthesis and characterization of novel lignocellulosic biomass-derived activated carbon for dye removal: Machine learning optimization, mechanisms, and antibacterial properties

IF 5.8 2区 生物学 Q1 AGRICULTURAL ENGINEERING Biomass & Bioenergy Pub Date : 2024-12-01 DOI:10.1016/j.biombioe.2024.107490
Amin Mohammadpour , Maryam Dolatabadi , Elza Bontempi , Ebrahim Shahsavani
{"title":"Synthesis and characterization of novel lignocellulosic biomass-derived activated carbon for dye removal: Machine learning optimization, mechanisms, and antibacterial properties","authors":"Amin Mohammadpour ,&nbsp;Maryam Dolatabadi ,&nbsp;Elza Bontempi ,&nbsp;Ebrahim Shahsavani","doi":"10.1016/j.biombioe.2024.107490","DOIUrl":null,"url":null,"abstract":"<div><div>Transforming waste materials into valuable products plays a crucial role in promoting sustainability and protecting environment. In this study, activated carbon derived from sugarcane bagasse, a lignocellulosic biomass source, was coated with iron and manganese for the adsorption and photodegradation of Acid Black 1 (AB1) dye from aqueous solutions. The effects of various parameters were investigated using Central Composite Design (CCD) and a Multi-Layer Perceptron (MLP) algorithm. The results of the characterization indicated that the iron and manganese particles were uniformly dispersed on the activated carbon. While CCD determined ideal parameters to be an initial concentration of 20.15 mg L<sup>−1</sup>, a dose of 25 mg/30 mL, a pH of 5, and a time of 40 min, the MLP Algorithm proposed slightly different conditions: an initial concentration of 26.66 mg L<sup>−1</sup>, dose of 25 mg, pH of 5.0, and a time of 25.05 min. Despite these differences, both methods projected impressive AB1 removal efficiency, 100 % for CCD and 99.02 % for MLP, underscoring the potential effectiveness of these strategies in AB1 mitigation. Concentration emerged as the predominant factor influencing the removal process, as determined by the MLP algorithm. The results showed that the major active species in the degradation of AB1 were e<sub>cb</sub><sup>−</sup> and <sup>•</sup>O<sub>2</sub><sup>−</sup>, while h<sub>vb</sub> <sup>+</sup> species also participated to some extent, and triethanolamine (TEOA) had a minor effect on the degradation efficiency. The nanocomposite exhibited a high antibacterial activity against <em>Staphylococcus aureus</em>, resulting in a large zone of inhibition. The optimized nanocomposite could be used as an effective nanomaterial to remove hazardous contaminants.</div></div>","PeriodicalId":253,"journal":{"name":"Biomass & Bioenergy","volume":"192 ","pages":"Article 107490"},"PeriodicalIF":5.8000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomass & Bioenergy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0961953424004434","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Transforming waste materials into valuable products plays a crucial role in promoting sustainability and protecting environment. In this study, activated carbon derived from sugarcane bagasse, a lignocellulosic biomass source, was coated with iron and manganese for the adsorption and photodegradation of Acid Black 1 (AB1) dye from aqueous solutions. The effects of various parameters were investigated using Central Composite Design (CCD) and a Multi-Layer Perceptron (MLP) algorithm. The results of the characterization indicated that the iron and manganese particles were uniformly dispersed on the activated carbon. While CCD determined ideal parameters to be an initial concentration of 20.15 mg L−1, a dose of 25 mg/30 mL, a pH of 5, and a time of 40 min, the MLP Algorithm proposed slightly different conditions: an initial concentration of 26.66 mg L−1, dose of 25 mg, pH of 5.0, and a time of 25.05 min. Despite these differences, both methods projected impressive AB1 removal efficiency, 100 % for CCD and 99.02 % for MLP, underscoring the potential effectiveness of these strategies in AB1 mitigation. Concentration emerged as the predominant factor influencing the removal process, as determined by the MLP algorithm. The results showed that the major active species in the degradation of AB1 were ecb and O2, while hvb + species also participated to some extent, and triethanolamine (TEOA) had a minor effect on the degradation efficiency. The nanocomposite exhibited a high antibacterial activity against Staphylococcus aureus, resulting in a large zone of inhibition. The optimized nanocomposite could be used as an effective nanomaterial to remove hazardous contaminants.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Biomass & Bioenergy
Biomass & Bioenergy 工程技术-能源与燃料
CiteScore
11.50
自引率
3.30%
发文量
258
审稿时长
60 days
期刊介绍: Biomass & Bioenergy is an international journal publishing original research papers and short communications, review articles and case studies on biological resources, chemical and biological processes, and biomass products for new renewable sources of energy and materials. The scope of the journal extends to the environmental, management and economic aspects of biomass and bioenergy. Key areas covered by the journal: • Biomass: sources, energy crop production processes, genetic improvements, composition. Please note that research on these biomass subjects must be linked directly to bioenergy generation. • Biological Residues: residues/rests from agricultural production, forestry and plantations (palm, sugar etc), processing industries, and municipal sources (MSW). Papers on the use of biomass residues through innovative processes/technological novelty and/or consideration of feedstock/system sustainability (or unsustainability) are welcomed. However waste treatment processes and pollution control or mitigation which are only tangentially related to bioenergy are not in the scope of the journal, as they are more suited to publications in the environmental arena. Papers that describe conventional waste streams (ie well described in existing literature) that do not empirically address ''new'' added value from the process are not suitable for submission to the journal. • Bioenergy Processes: fermentations, thermochemical conversions, liquid and gaseous fuels, and petrochemical substitutes • Bioenergy Utilization: direct combustion, gasification, electricity production, chemical processes, and by-product remediation • Biomass and the Environment: carbon cycle, the net energy efficiency of bioenergy systems, assessment of sustainability, and biodiversity issues.
期刊最新文献
Strengthening cracking reactions via introducing nickel species in activation of poplar for enhancing production of mesopores Fluted pumpkin waste potential as a green solid bioalkaline catalyst for neem seed oil biodiesel synthesis Synthesis and characterization of novel lignocellulosic biomass-derived activated carbon for dye removal: Machine learning optimization, mechanisms, and antibacterial properties Evaluation of catalytic performance of the Ni/M-MgO (M=Cu, W, and Ti) catalysts for dry reforming of glycerol Biorefinery approach for rhamnolipid production by metabolically engineered Pseudomonas taiwanensis VLB120
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1