Da Liu, Peifang Guo, Qiangqiang Wang, Xingyu Ding, Yufei He, Jin Zhou, Dalin Sun, Hongge Pan, Renbing Wu
{"title":"Local Proton‐Mediated Synthesis of a High‐Entropy Borate Library","authors":"Da Liu, Peifang Guo, Qiangqiang Wang, Xingyu Ding, Yufei He, Jin Zhou, Dalin Sun, Hongge Pan, Renbing Wu","doi":"10.1002/adma.202414067","DOIUrl":null,"url":null,"abstract":"High‐entropy compounds (HECs) provide extensive possibilities for exploring distinctive properties and potential applications. However, most HECs reported so far are synthesized by an arduous high‐temperature treatment and special equipment, which is clearly not scalable for practical application. Here a scalable room‐temperature solution synthetic strategy is reported for a library of high‐entropy borates with arbitrary metal component numbers from 5 to 12 up to 3302 kinds in total and more than a hundred grams per operation within one minute. In conjunction with theoretical and in situ investigations, it is uncovered that the highly local concentration of protons at ethanol/aqueous interface is favorable to the creation of a stable thermodynamic microenvironment and a desirable kinetic miscibility reservoir, thus enabling a formation of single‐phase borates. With the FeCoNiMoCu high‐entropy borate, it is further shows that it functions as a highly active catalyst for catalytic oxygen evolution reaction. The work opens up opportunities for the scalable synthesis of HECs for energy storage and conversion applications.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"1 1","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202414067","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
High‐entropy compounds (HECs) provide extensive possibilities for exploring distinctive properties and potential applications. However, most HECs reported so far are synthesized by an arduous high‐temperature treatment and special equipment, which is clearly not scalable for practical application. Here a scalable room‐temperature solution synthetic strategy is reported for a library of high‐entropy borates with arbitrary metal component numbers from 5 to 12 up to 3302 kinds in total and more than a hundred grams per operation within one minute. In conjunction with theoretical and in situ investigations, it is uncovered that the highly local concentration of protons at ethanol/aqueous interface is favorable to the creation of a stable thermodynamic microenvironment and a desirable kinetic miscibility reservoir, thus enabling a formation of single‐phase borates. With the FeCoNiMoCu high‐entropy borate, it is further shows that it functions as a highly active catalyst for catalytic oxygen evolution reaction. The work opens up opportunities for the scalable synthesis of HECs for energy storage and conversion applications.
期刊介绍:
Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.