Adjoint-based goal-oriented implicit shock tracking using full space mesh optimization

IF 3.8 2区 物理与天体物理 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Journal of Computational Physics Pub Date : 2024-11-29 DOI:10.1016/j.jcp.2024.113633
Pranshul Thakur, Siva Nadarajah
{"title":"Adjoint-based goal-oriented implicit shock tracking using full space mesh optimization","authors":"Pranshul Thakur,&nbsp;Siva Nadarajah","doi":"10.1016/j.jcp.2024.113633","DOIUrl":null,"url":null,"abstract":"<div><div>Solutions to the governing partial differential equations obtained from a discrete numerical scheme can have significant errors, especially near shocks where the discrete representation of the solution cannot fully capture the discontinuity in the solution. Recent approaches of shock tracking <span><span>[1]</span></span>, <span><span>[2]</span></span> implicitly align the faces of mesh elements with the shock, yielding accurate solutions on coarse meshes. In engineering applications, the solution field is often used to evaluate a scalar functional of interest, such as lift or drag over an airfoil. While functionals are sensitive to errors in the flow solution, certain regions in the domain are more important for accurate evaluation of the functional than the rest. Using this fact, we formulate a goal-oriented implicit shock tracking approach that captures a segment of the discontinuity that is important for evaluating the functional. Shock tracking is achieved using the Lagrange-Newton-Krylov-Schur (LNKS) full space optimizer to minimize the adjoint-weighted residual error indicator. We also present a method to evaluate the sensitivity and the Hessian of the functional error. Using available block preconditioners for LNKS <span><span>[3]</span></span>, <span><span>[4]</span></span> makes the full space approach scalable. The method is applied to test cases of two-dimensional advection and inviscid compressible flows to demonstrate functional-dependent shock tracking. Tracking the entire shock without using artificial dissipation results in the error converging at the orders of <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>h</mi></mrow><mrow><mi>p</mi><mo>+</mo><mn>1</mn></mrow></msup><mo>)</mo></math></span>.</div></div>","PeriodicalId":352,"journal":{"name":"Journal of Computational Physics","volume":"523 ","pages":"Article 113633"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021999124008817","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Solutions to the governing partial differential equations obtained from a discrete numerical scheme can have significant errors, especially near shocks where the discrete representation of the solution cannot fully capture the discontinuity in the solution. Recent approaches of shock tracking [1], [2] implicitly align the faces of mesh elements with the shock, yielding accurate solutions on coarse meshes. In engineering applications, the solution field is often used to evaluate a scalar functional of interest, such as lift or drag over an airfoil. While functionals are sensitive to errors in the flow solution, certain regions in the domain are more important for accurate evaluation of the functional than the rest. Using this fact, we formulate a goal-oriented implicit shock tracking approach that captures a segment of the discontinuity that is important for evaluating the functional. Shock tracking is achieved using the Lagrange-Newton-Krylov-Schur (LNKS) full space optimizer to minimize the adjoint-weighted residual error indicator. We also present a method to evaluate the sensitivity and the Hessian of the functional error. Using available block preconditioners for LNKS [3], [4] makes the full space approach scalable. The method is applied to test cases of two-dimensional advection and inviscid compressible flows to demonstrate functional-dependent shock tracking. Tracking the entire shock without using artificial dissipation results in the error converging at the orders of O(hp+1).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于伴结点的目标导向隐式冲击跟踪全空间网格优化
从离散数值格式得到的控制偏微分方程的解可能有很大的误差,特别是在接近冲击时,解的离散表示不能完全捕获解中的不连续。最近的激波跟踪方法[1],[2]隐式地将网格单元的面与激波对齐,在粗网格上得到精确的解。在工程应用中,解域通常用于评估感兴趣的标量函数,例如机翼上的升力或阻力。虽然泛函对流解中的错误很敏感,但域中的某些区域对于准确评估泛函比其他区域更重要。利用这一事实,我们制定了一种目标导向的隐式冲击跟踪方法,该方法捕获了对评估功能很重要的不连续部分。冲击跟踪是使用Lagrange-Newton-Krylov-Schur (LNKS)全空间优化器实现的,以最小化伴随加权残差指标。我们还提出了一种评估函数误差灵敏度和黑森值的方法。对LNKS[3]使用可用的块预调节器,[4]使全空间方法具有可扩展性。将该方法应用于二维平流和无粘可压缩流的测试案例,以验证与功能相关的激波跟踪。在不使用人工耗散的情况下跟踪整个冲击导致误差收敛到O(hp+1)阶。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Computational Physics
Journal of Computational Physics 物理-计算机:跨学科应用
CiteScore
7.60
自引率
14.60%
发文量
763
审稿时长
5.8 months
期刊介绍: Journal of Computational Physics thoroughly treats the computational aspects of physical problems, presenting techniques for the numerical solution of mathematical equations arising in all areas of physics. The journal seeks to emphasize methods that cross disciplinary boundaries. The Journal of Computational Physics also publishes short notes of 4 pages or less (including figures, tables, and references but excluding title pages). Letters to the Editor commenting on articles already published in this Journal will also be considered. Neither notes nor letters should have an abstract.
期刊最新文献
Conservative, bounded, and nonlinear discretization of the Cahn-Hilliard-Navier-Stokes equations Adjoint-based goal-oriented implicit shock tracking using full space mesh optimization A double-layer non-hydrostatic model for simulating wave-structure and wave-jet interactions Strongly stable dual-pairing summation by parts finite difference schemes for the vector invariant nonlinear shallow water equations – I: Numerical scheme and validation on the plane Parallel primal-dual active-set algorithm with nonlinear and linear preconditioners
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1