Predictions of Line Chilldown Boiling Regime Transitions by a Coupled CFD-Subgrid Boiling Model Validated against 1G LN2 Experiments

IF 5 2区 工程技术 Q1 ENGINEERING, MECHANICAL International Journal of Heat and Mass Transfer Pub Date : 2024-12-02 DOI:10.1016/j.ijheatmasstransfer.2024.126385
Mohammad Kassemi , Sonya Hylton , Olga Kartuzova , Vineet Ahuja , Ashvin Hosangadi
{"title":"Predictions of Line Chilldown Boiling Regime Transitions by a Coupled CFD-Subgrid Boiling Model Validated against 1G LN2 Experiments","authors":"Mohammad Kassemi ,&nbsp;Sonya Hylton ,&nbsp;Olga Kartuzova ,&nbsp;Vineet Ahuja ,&nbsp;Ashvin Hosangadi","doi":"10.1016/j.ijheatmasstransfer.2024.126385","DOIUrl":null,"url":null,"abstract":"<div><div>Before filling a propellant tank on the ground or in Space, the transfer line between the donor and receiver tanks must be cooled down, preferably while sacrificing the least amount of the cryogenic fluid. The cryogenic line chill-down process involves transitions between different flow boiling regimes, namely film boiling, transition film boiling, and nucleate boiling, which are complex and gravity-dependent. Attempts to capture these boiling phenomena and to predict the transitions between them in a Computational Fluid Dynamics (CFD) framework are new and challenging. The present work addresses this challenge by following an Eulerian approach in which a homogeneous two-phase mixture model is used together with the Lee phase change formulation to capture the chilldown film boiling regime in the framework of the ANSYS Fluent® CFD code. The chilldown nucleate boiling regime is predicted by a mechanistic subgrid model that accounts for the nucleation, growth, departure diameter, and shedding frequency of the bubbles. The subgrid model is encoded and coupled to the CFD model via a user-defined function for the wall-fluid heat flux calculations. The coupled CFD-Subgrid model is validated against published experimental data for the chill-down of a heated stainless-steel pipe in 1g using liquid nitrogen (LN2). The CFD predictions of the wall temperature evolution, rewetting temperature, and transition between film and nucleate boiling agree well with experimental measurements for LN2 flow in a vertical pipe. Physical insights derived from the CFD simulations and validation are described, and the strengths and weaknesses of the modeling approach are presented and discussed. Recommendations for future improvements of the CFD model are also provided.</div></div>","PeriodicalId":336,"journal":{"name":"International Journal of Heat and Mass Transfer","volume":"238 ","pages":"Article 126385"},"PeriodicalIF":5.0000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Heat and Mass Transfer","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0017931024012146","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Before filling a propellant tank on the ground or in Space, the transfer line between the donor and receiver tanks must be cooled down, preferably while sacrificing the least amount of the cryogenic fluid. The cryogenic line chill-down process involves transitions between different flow boiling regimes, namely film boiling, transition film boiling, and nucleate boiling, which are complex and gravity-dependent. Attempts to capture these boiling phenomena and to predict the transitions between them in a Computational Fluid Dynamics (CFD) framework are new and challenging. The present work addresses this challenge by following an Eulerian approach in which a homogeneous two-phase mixture model is used together with the Lee phase change formulation to capture the chilldown film boiling regime in the framework of the ANSYS Fluent® CFD code. The chilldown nucleate boiling regime is predicted by a mechanistic subgrid model that accounts for the nucleation, growth, departure diameter, and shedding frequency of the bubbles. The subgrid model is encoded and coupled to the CFD model via a user-defined function for the wall-fluid heat flux calculations. The coupled CFD-Subgrid model is validated against published experimental data for the chill-down of a heated stainless-steel pipe in 1g using liquid nitrogen (LN2). The CFD predictions of the wall temperature evolution, rewetting temperature, and transition between film and nucleate boiling agree well with experimental measurements for LN2 flow in a vertical pipe. Physical insights derived from the CFD simulations and validation are described, and the strengths and weaknesses of the modeling approach are presented and discussed. Recommendations for future improvements of the CFD model are also provided.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.30
自引率
13.50%
发文量
1319
审稿时长
41 days
期刊介绍: International Journal of Heat and Mass Transfer is the vehicle for the exchange of basic ideas in heat and mass transfer between research workers and engineers throughout the world. It focuses on both analytical and experimental research, with an emphasis on contributions which increase the basic understanding of transfer processes and their application to engineering problems. Topics include: -New methods of measuring and/or correlating transport-property data -Energy engineering -Environmental applications of heat and/or mass transfer
期刊最新文献
Coupling effects among viscosity, viscous dissipation and convective heat transfer in the microscale flow of polymer melt Experimental investigation on gas-liquid two-phase flow patterns and vibration characteristics of an inducer pump The suppression and CO elimination performance of Co3O4 dust cloud for methane-air mixture explosion Boiling performance enhancement and self-recovery of nucleate boiling regime on micro- and nanostructured porous surfaces Predictions of Line Chilldown Boiling Regime Transitions by a Coupled CFD-Subgrid Boiling Model Validated against 1G LN2 Experiments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1