Yu Zhang, Yang Liu, Zhuoran Zeng, Nick Birbilis, Philip N.H. Nakashima, Laure Bourgeois
{"title":"Multimodal element (including lithium) mapping in a Mg-9Li-4Al-1Zn alloy","authors":"Yu Zhang, Yang Liu, Zhuoran Zeng, Nick Birbilis, Philip N.H. Nakashima, Laure Bourgeois","doi":"10.1016/j.jma.2024.11.004","DOIUrl":null,"url":null,"abstract":"Determining the distribution of alloying elements, particularly lithium, is crucial for a holistic understanding of magnesium-lithium-based alloys. In this work, a bespoke ratio spectrum-imaging method based on electron energy-loss spectroscopy, in combination with time-of-flight secondary ion mass spectrometry, energy-dispersive X-ray spectroscopy and Z-contrast imaging, was applied to an as-rolled LAZ941 alloy (Mg-9Li-4Al-1Zn in wt.%). This was done to characterize the distribution of alloying elements, including the distribution of solute in the magnesium matrix. The applications of different mapping techniques revealed that precipitates with two different morphologies are rich in Li, Al and Zn, compared to their surrounding matrix. Additionally, it was confirmed that the β-phase of the alloy contains higher Li and lower Mg concentrations when compared to the α-phase. This study demonstrated the effectiveness and accuracy of the ratio spectrum-imaging method for mapping the elemental distribution (including lithium) in a range of Li-containing materials.","PeriodicalId":16214,"journal":{"name":"Journal of Magnesium and Alloys","volume":"8 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnesium and Alloys","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jma.2024.11.004","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Determining the distribution of alloying elements, particularly lithium, is crucial for a holistic understanding of magnesium-lithium-based alloys. In this work, a bespoke ratio spectrum-imaging method based on electron energy-loss spectroscopy, in combination with time-of-flight secondary ion mass spectrometry, energy-dispersive X-ray spectroscopy and Z-contrast imaging, was applied to an as-rolled LAZ941 alloy (Mg-9Li-4Al-1Zn in wt.%). This was done to characterize the distribution of alloying elements, including the distribution of solute in the magnesium matrix. The applications of different mapping techniques revealed that precipitates with two different morphologies are rich in Li, Al and Zn, compared to their surrounding matrix. Additionally, it was confirmed that the β-phase of the alloy contains higher Li and lower Mg concentrations when compared to the α-phase. This study demonstrated the effectiveness and accuracy of the ratio spectrum-imaging method for mapping the elemental distribution (including lithium) in a range of Li-containing materials.
期刊介绍:
The Journal of Magnesium and Alloys serves as a global platform for both theoretical and experimental studies in magnesium science and engineering. It welcomes submissions investigating various scientific and engineering factors impacting the metallurgy, processing, microstructure, properties, and applications of magnesium and alloys. The journal covers all aspects of magnesium and alloy research, including raw materials, alloy casting, extrusion and deformation, corrosion and surface treatment, joining and machining, simulation and modeling, microstructure evolution and mechanical properties, new alloy development, magnesium-based composites, bio-materials and energy materials, applications, and recycling.