Yongchuan Liu, Jie Shen, Guolin Hu, Guihuang Fang, Yuanqiang Chen, Xiangxin Zhang, Zhanlin Yang, Baisheng Sa, Yining Zhang
{"title":"Stable low-temperature lithium metal batteries with dendrite-free ability enabled by electrolytes with cooperative Li+-solvation","authors":"Yongchuan Liu, Jie Shen, Guolin Hu, Guihuang Fang, Yuanqiang Chen, Xiangxin Zhang, Zhanlin Yang, Baisheng Sa, Yining Zhang","doi":"10.1016/j.cej.2024.158223","DOIUrl":null,"url":null,"abstract":"In subzero environments, sluggish electrochemical kinetics and unstable electrode/electrolyte interphases hinder progress in lithium metal batteries (LMBs), emphasizing the need for advanced electrolytes to ensure stability in harsh environments. Herein, we proposed a balanced “cocktail optimized” electrolyte by manipulating solvated and anionic species. The dual salt/dual solvent electrolyte simultaneously achieves low bulk impedance and low interfacial impedance, while also demonstrating improved Li reversibility and oxidation stability. The tailored solvation structure encourages the breakdown of anions, leading to the formation of inorganic-rich interphases at both the cathode and Li-anode, which enables a uniform plating-stripping of Li while maintaining exceptional voltage resilience on the cathode. Moreover, NO<sub>3</sub><sup>–</sup> ions preferentially adsorb onto the cathode surface within the inner Helmholtz plane, shielding the easily-oxidized non-solvating solvent molecules, a phenomenon referred to as the “shielding effect”, thus inhibiting side oxidation reactions. Consequently, the anion-derived interface chemistry contributes to the dendrite-free Li deposition with a high CE of 99.45%, a stable cycling of Li||NCM523 battery with 85% capacity retention after 150 cycles, and a superior low-temperature discharge performance at −30 ℃ with a capacity retention of 68.2%. This work sheds light on an encouraging electrolyte strategy for stable LMBs in a wide-temperature range.","PeriodicalId":270,"journal":{"name":"Chemical Engineering Journal","volume":"53 1","pages":""},"PeriodicalIF":13.3000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.cej.2024.158223","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In subzero environments, sluggish electrochemical kinetics and unstable electrode/electrolyte interphases hinder progress in lithium metal batteries (LMBs), emphasizing the need for advanced electrolytes to ensure stability in harsh environments. Herein, we proposed a balanced “cocktail optimized” electrolyte by manipulating solvated and anionic species. The dual salt/dual solvent electrolyte simultaneously achieves low bulk impedance and low interfacial impedance, while also demonstrating improved Li reversibility and oxidation stability. The tailored solvation structure encourages the breakdown of anions, leading to the formation of inorganic-rich interphases at both the cathode and Li-anode, which enables a uniform plating-stripping of Li while maintaining exceptional voltage resilience on the cathode. Moreover, NO3– ions preferentially adsorb onto the cathode surface within the inner Helmholtz plane, shielding the easily-oxidized non-solvating solvent molecules, a phenomenon referred to as the “shielding effect”, thus inhibiting side oxidation reactions. Consequently, the anion-derived interface chemistry contributes to the dendrite-free Li deposition with a high CE of 99.45%, a stable cycling of Li||NCM523 battery with 85% capacity retention after 150 cycles, and a superior low-temperature discharge performance at −30 ℃ with a capacity retention of 68.2%. This work sheds light on an encouraging electrolyte strategy for stable LMBs in a wide-temperature range.
期刊介绍:
The Chemical Engineering Journal is an international research journal that invites contributions of original and novel fundamental research. It aims to provide an international platform for presenting original fundamental research, interpretative reviews, and discussions on new developments in chemical engineering. The journal welcomes papers that describe novel theory and its practical application, as well as those that demonstrate the transfer of techniques from other disciplines. It also welcomes reports on carefully conducted experimental work that is soundly interpreted. The main focus of the journal is on original and rigorous research results that have broad significance. The Catalysis section within the Chemical Engineering Journal focuses specifically on Experimental and Theoretical studies in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. These studies have industrial impact on various sectors such as chemicals, energy, materials, foods, healthcare, and environmental protection.