Molecular composition difference of electron donating moieties between natural organic matter and effluent organic matter probed by chlorine dioxide

IF 11.4 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL Water Research Pub Date : 2024-12-03 DOI:10.1016/j.watres.2024.122911
Quan Gao, Yanheng Pan, Yangjian Zhou, Jianglin Peng, Qingqing Kong, Yanhui Cheng, Qing-Long Fu, Xin Yang
{"title":"Molecular composition difference of electron donating moieties between natural organic matter and effluent organic matter probed by chlorine dioxide","authors":"Quan Gao, Yanheng Pan, Yangjian Zhou, Jianglin Peng, Qingqing Kong, Yanhui Cheng, Qing-Long Fu, Xin Yang","doi":"10.1016/j.watres.2024.122911","DOIUrl":null,"url":null,"abstract":"Lignin- and tannin-like phenolic compounds are shown to be the major compositions of electron donating moieties (EDM) of aquatic natural organic matter (NOM). However, little is known about the compositions of EDMs within effluent organic matter (EfOM). In the present study, chlorine dioxide (ClO<sub>2</sub>) was used as a selectively oxidative probe to investigate the difference in the molecular composition of EDM between NOM and EfOM due to its high selectivity towards electron-rich compounds. The results showed that there was a large difference in the bulk and molecular properties of ClO<sub>2</sub>-reactive moieties between EfOM and NOM. Specifically, ClO<sub>2</sub>-reactive moieties of EfOM are distributed in a narrower molecular weight range (i.e., 0.9 kDa to 3.0 kDa) compared to NOM (i.e.,1.0 kDa to 20 kDa). The molecular-level analysis demonstrated that highly aromatic, reduced formulas (O/C = 0.33 ± 0.16; H/C = 1.10 ± 0.34) referring the lignin- and tannin-like compounds within both NOM and EfOM were susceptible to oxidation by ClO<sub>2</sub>, while more saturated formulas including the peptide-like formulas (H/C = 1.59 ± 0.36) within EfOM were reactive towards ClO<sub>2</sub>. Furthermore, the nitrogen (N)-containing formulas in EfOM are suggested to be the major EDMs compared to the CHO-only formulas dominating the EDM in NOM. This study has important implications for understanding of the origin and chemical nature of EDM in DOM from various sources and provide molecular-level evidence for the selectivity of ClO<sub>2</sub> as an oxidant towards DOM.","PeriodicalId":443,"journal":{"name":"Water Research","volume":"4 1","pages":""},"PeriodicalIF":11.4000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.watres.2024.122911","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Lignin- and tannin-like phenolic compounds are shown to be the major compositions of electron donating moieties (EDM) of aquatic natural organic matter (NOM). However, little is known about the compositions of EDMs within effluent organic matter (EfOM). In the present study, chlorine dioxide (ClO2) was used as a selectively oxidative probe to investigate the difference in the molecular composition of EDM between NOM and EfOM due to its high selectivity towards electron-rich compounds. The results showed that there was a large difference in the bulk and molecular properties of ClO2-reactive moieties between EfOM and NOM. Specifically, ClO2-reactive moieties of EfOM are distributed in a narrower molecular weight range (i.e., 0.9 kDa to 3.0 kDa) compared to NOM (i.e.,1.0 kDa to 20 kDa). The molecular-level analysis demonstrated that highly aromatic, reduced formulas (O/C = 0.33 ± 0.16; H/C = 1.10 ± 0.34) referring the lignin- and tannin-like compounds within both NOM and EfOM were susceptible to oxidation by ClO2, while more saturated formulas including the peptide-like formulas (H/C = 1.59 ± 0.36) within EfOM were reactive towards ClO2. Furthermore, the nitrogen (N)-containing formulas in EfOM are suggested to be the major EDMs compared to the CHO-only formulas dominating the EDM in NOM. This study has important implications for understanding of the origin and chemical nature of EDM in DOM from various sources and provide molecular-level evidence for the selectivity of ClO2 as an oxidant towards DOM.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Water Research
Water Research 环境科学-工程:环境
CiteScore
20.80
自引率
9.40%
发文量
1307
审稿时长
38 days
期刊介绍: Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include: •Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management; •Urban hydrology including sewer systems, stormwater management, and green infrastructure; •Drinking water treatment and distribution; •Potable and non-potable water reuse; •Sanitation, public health, and risk assessment; •Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions; •Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment; •Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution; •Environmental restoration, linked to surface water, groundwater and groundwater remediation; •Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts; •Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle; •Socio-economic, policy, and regulations studies.
期刊最新文献
Molecular composition difference of electron donating moieties between natural organic matter and effluent organic matter probed by chlorine dioxide Sulfur powder utilization and denitrification efficiency in an elemental sulfur-based membrane bioreactor with coagulant addition Isomer-Specific Sediment-Water Partitioning and Bioaccumulation of Perfluoroalkyl Sulfonyl Fluorides Enhanced phosphorus bioavailability of biochar derived from sewage sludge co-pyrolyzed with K, Ca-rich biomass ash Quantifying patterns of microbial community assembly processes in bioreactors using different approaches leads to variable results
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1