Guillermo Escalona, Ramon Ocadiz-Ruiz, Jeffrey A. Ma, Ian A. Schrack, Brian C. Ross, Alexis K. Morrison, Jacqueline S. Jeruss, Lonnie D. Shea
{"title":"Design Principles of an Engineered Metastatic Niche for Monitoring of Cancer Progression","authors":"Guillermo Escalona, Ramon Ocadiz-Ruiz, Jeffrey A. Ma, Ian A. Schrack, Brian C. Ross, Alexis K. Morrison, Jacqueline S. Jeruss, Lonnie D. Shea","doi":"10.1002/bit.28895","DOIUrl":null,"url":null,"abstract":"<p>Across many types of cancer, metastatic disease is associated with a substantial decrease in 5-year survival rates relative to only a localized primary tumor. Many patients self-report metastatic disease due to disruption of normal organ or tissue function, and earlier detection could enable treatment with a lower burden of disease. We have previously reported a subcutaneous biomaterial implant for early detection by serving as an engineered metastatic niche, which has been reported to recruit tumor cells before colonization of solid organs. In this report, we investigated the design principles of the scaffold and defined the conditions for use in disease detection. Using the metastatic 4T1 triple-negative breast cancer model, we identified that a porous structure was essential to capture tumor and immune cells. Scaffolds of multiple diameters were investigated for their ability to serve as a metastatic niche, with a porous scaffold with a diameter as small as 2 mm identifying disease accurately. Additionally, scaffolds that had been in vivo for 1–5 weeks were able to identify disease accurately. Finally, the sensitivity of the scaffold relative to liquid biopsies was analyzed, with scaffolds accurately detecting disease at earlier time points than liquid biopsy. Collectively, these studies inform the design principles and use conditions for porous scaffolds to detect metastatic disease.</p>","PeriodicalId":9168,"journal":{"name":"Biotechnology and Bioengineering","volume":"122 3","pages":"631-641"},"PeriodicalIF":3.5000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bit.28895","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology and Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bit.28895","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Across many types of cancer, metastatic disease is associated with a substantial decrease in 5-year survival rates relative to only a localized primary tumor. Many patients self-report metastatic disease due to disruption of normal organ or tissue function, and earlier detection could enable treatment with a lower burden of disease. We have previously reported a subcutaneous biomaterial implant for early detection by serving as an engineered metastatic niche, which has been reported to recruit tumor cells before colonization of solid organs. In this report, we investigated the design principles of the scaffold and defined the conditions for use in disease detection. Using the metastatic 4T1 triple-negative breast cancer model, we identified that a porous structure was essential to capture tumor and immune cells. Scaffolds of multiple diameters were investigated for their ability to serve as a metastatic niche, with a porous scaffold with a diameter as small as 2 mm identifying disease accurately. Additionally, scaffolds that had been in vivo for 1–5 weeks were able to identify disease accurately. Finally, the sensitivity of the scaffold relative to liquid biopsies was analyzed, with scaffolds accurately detecting disease at earlier time points than liquid biopsy. Collectively, these studies inform the design principles and use conditions for porous scaffolds to detect metastatic disease.
期刊介绍:
Biotechnology & Bioengineering publishes Perspectives, Articles, Reviews, Mini-Reviews, and Communications to the Editor that embrace all aspects of biotechnology. These include:
-Enzyme systems and their applications, including enzyme reactors, purification, and applied aspects of protein engineering
-Animal-cell biotechnology, including media development
-Applied aspects of cellular physiology, metabolism, and energetics
-Biocatalysis and applied enzymology, including enzyme reactors, protein engineering, and nanobiotechnology
-Biothermodynamics
-Biofuels, including biomass and renewable resource engineering
-Biomaterials, including delivery systems and materials for tissue engineering
-Bioprocess engineering, including kinetics and modeling of biological systems, transport phenomena in bioreactors, bioreactor design, monitoring, and control
-Biosensors and instrumentation
-Computational and systems biology, including bioinformatics and genomic/proteomic studies
-Environmental biotechnology, including biofilms, algal systems, and bioremediation
-Metabolic and cellular engineering
-Plant-cell biotechnology
-Spectroscopic and other analytical techniques for biotechnological applications
-Synthetic biology
-Tissue engineering, stem-cell bioengineering, regenerative medicine, gene therapy and delivery systems
The editors will consider papers for publication based on novelty, their immediate or future impact on biotechnological processes, and their contribution to the advancement of biochemical engineering science. Submission of papers dealing with routine aspects of bioprocessing, description of established equipment, and routine applications of established methodologies (e.g., control strategies, modeling, experimental methods) is discouraged. Theoretical papers will be judged based on the novelty of the approach and their potential impact, or on their novel capability to predict and elucidate experimental observations.