The theory guides the doping of rare earth elements in the bulk phase of LiNi0.6Co0.2Mn0.2O2 to reach the theoretical limit of energy density.

IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL Journal of Colloid and Interface Science Pub Date : 2025-03-15 Epub Date: 2024-11-30 DOI:10.1016/j.jcis.2024.11.216
Longjiao Chang, Zenglei Hou, Wei Yang, Ruifen Yang, Anlu Wei, Shaohua Luo
{"title":"The theory guides the doping of rare earth elements in the bulk phase of LiNi<sub>0.6</sub>Co<sub>0.2</sub>Mn<sub>0.2</sub>O<sub>2</sub> to reach the theoretical limit of energy density.","authors":"Longjiao Chang, Zenglei Hou, Wei Yang, Ruifen Yang, Anlu Wei, Shaohua Luo","doi":"10.1016/j.jcis.2024.11.216","DOIUrl":null,"url":null,"abstract":"<p><p>Rare earth elements, characterized by their high-energy d-shell and f-shell electrons, large charge density, and substantial atomic radius, theoretically offer enhanced electronic states near the Fermi level. Doping rare earth elements into electrode materials can improve the internal electronic conductivity of the material. However, there are relatively few studies and reports on the mechanisms of rare earth elements in optimizing LiNi<sub>x</sub>Co<sub>y</sub>Mn<sub>1-x-y</sub>O<sub>2</sub> (NCM) materials. This study analyzes the feasibility of lanthanide doping through model construction and density functional theory (DFT) calculations. The LiNi<sub>0.56</sub>Co<sub>0.2</sub>Mn<sub>0.2</sub>Ce<sub>0.04</sub>O<sub>2</sub> (1/24 Ce-doped NCM622) material, guided by first-principles calculations, can even achieve an energy density of 248 mA h g<sup>-1</sup> as the cathode of lithium-ion batteries, which is almost the theoretical limit of the energy density of medium-content high-nickel ternary materials, reaching the level of eight-series high-nickel materials. At a rate of 0.1 C, the capacity retention rate can be 91.12 % after 300 cycles. This work introduces new development opportunities for NCM622 materials synthesized via a simple co-precipitation method in an air atmosphere and provides valuable insights into the role of rare earth elements in electrode material optimization.</p>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"682 ","pages":"340-352"},"PeriodicalIF":9.4000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.jcis.2024.11.216","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/30 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Rare earth elements, characterized by their high-energy d-shell and f-shell electrons, large charge density, and substantial atomic radius, theoretically offer enhanced electronic states near the Fermi level. Doping rare earth elements into electrode materials can improve the internal electronic conductivity of the material. However, there are relatively few studies and reports on the mechanisms of rare earth elements in optimizing LiNixCoyMn1-x-yO2 (NCM) materials. This study analyzes the feasibility of lanthanide doping through model construction and density functional theory (DFT) calculations. The LiNi0.56Co0.2Mn0.2Ce0.04O2 (1/24 Ce-doped NCM622) material, guided by first-principles calculations, can even achieve an energy density of 248 mA h g-1 as the cathode of lithium-ion batteries, which is almost the theoretical limit of the energy density of medium-content high-nickel ternary materials, reaching the level of eight-series high-nickel materials. At a rate of 0.1 C, the capacity retention rate can be 91.12 % after 300 cycles. This work introduces new development opportunities for NCM622 materials synthesized via a simple co-precipitation method in an air atmosphere and provides valuable insights into the role of rare earth elements in electrode material optimization.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
期刊最新文献
Efficient carbon dioxide conversion by nickel ferrite-based catalysts derived from metallurgical electroplating sludge collaborating with low-temperature plasma. Enhancement of the urea oxidation reaction by constructing hierarchical CoFe-PBA@S/NiFe-LDH nanoboxes with strengthened built-in electric fields. The theory guides the doping of rare earth elements in the bulk phase of LiNi0.6Co0.2Mn0.2O2 to reach the theoretical limit of energy density. Design of a Dual-Phase TiN-WN electrochemical sensor for H2S detection. Green preparation of nitrogen vacancies enriched g-C3N4 for efficient photocatalytic reduction of CO2 and Cr(VI).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1