CD22 blockade exacerbates neuroinflammation in Neuromyelitis optica spectrum disorder.

IF 9.3 1区 医学 Q1 IMMUNOLOGY Journal of Neuroinflammation Pub Date : 2024-11-30 DOI:10.1186/s12974-024-03305-2
Wenjun Zhang, Yali Han, Huachen Huang, Yue Su, Honglei Ren, Caiyun Qi, Jinyi Li, Huaijin Yang, Jing Xu, Guoqiang Chang, Wenjin Qiu, Qiang Liu, Ting Chang
{"title":"CD22 blockade exacerbates neuroinflammation in Neuromyelitis optica spectrum disorder.","authors":"Wenjun Zhang, Yali Han, Huachen Huang, Yue Su, Honglei Ren, Caiyun Qi, Jinyi Li, Huaijin Yang, Jing Xu, Guoqiang Chang, Wenjin Qiu, Qiang Liu, Ting Chang","doi":"10.1186/s12974-024-03305-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Neuromyelitis optica spectrum disorder (NMOSD) is an autoantibody-triggered central nervous system (CNS) demyelinating disease that primarily affects the spinal cord, optic nerves and brainstem. Among the first responders to CNS injury, microglia are prominent players that drive NMOSD lesion formation. However, the key molecular switches controlling the detrimental activity of microglia in NMOSD are poorly understood. CD22 governs the activity of innate and adaptive immunity. In this study, we investigated to what extent and by what mechanisms CD22 may modulate microglial activity, neuroinflammation and CNS lesion formation.</p><p><strong>Methods: </strong>To determine the expression profile of CD22 in NMOSD, we performed single-cell sequencing and flow cytometry analysis of immune cells from human peripheral blood. We investigated the potential effects and mechanisms of CD22 blockade on microglial activity, leukocyte infiltration and CNS demyelination in a mouse model of NMOSD induced by injection of NMOSD patient serum-derived AQP4-IgG and human complement.</p><p><strong>Results: </strong>Single-cell sequencing and flow cytometry analysis revealed that CD22 was expressed in B cells, neutrophils, monocytes and microglia-derived exosomes in human peripheral blood from NMOSD patients and controls (n = 5 per group). In a mouse model of NMOSD, CD22 was expressed in B cells, neutrophils, monocytes and microglia (n = 8 per group). In NMOSD mice, CD22 blockade significantly increased the number of CNS lesions, astrocyte loss and demyelination, accompanied by increased inflammatory activity and phagocytosis in microglia. Furthermore, the detrimental effects of CD22 blockade were significantly alleviated in NMOSD mice subjected to depletion of microglia or Gr-1<sup>+</sup> myeloid cells, suggesting the involvement of microglia and peripheral Gr-1<sup>+</sup> myeloid cells. Additionally, CD22 blockade also led to significantly reduced phosphorylation of SYK and GSK3β in NMOSD. Notably, the detrimental effects of CD22 blockade were greatly diminished in NMOSD mice receiving the phosphorylated SYK inhibitor R406.</p><p><strong>Conclusions: </strong>Our findings revealed a previously unrecognized role of CD22 as a key molecular switch that governs the detrimental effects of microglia and Gr-1<sup>+</sup> myeloid cells in NMOSD, which paves the way for the future design of immune therapies for NMOSD.</p>","PeriodicalId":16577,"journal":{"name":"Journal of Neuroinflammation","volume":"21 1","pages":"313"},"PeriodicalIF":9.3000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11607829/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroinflammation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12974-024-03305-2","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Neuromyelitis optica spectrum disorder (NMOSD) is an autoantibody-triggered central nervous system (CNS) demyelinating disease that primarily affects the spinal cord, optic nerves and brainstem. Among the first responders to CNS injury, microglia are prominent players that drive NMOSD lesion formation. However, the key molecular switches controlling the detrimental activity of microglia in NMOSD are poorly understood. CD22 governs the activity of innate and adaptive immunity. In this study, we investigated to what extent and by what mechanisms CD22 may modulate microglial activity, neuroinflammation and CNS lesion formation.

Methods: To determine the expression profile of CD22 in NMOSD, we performed single-cell sequencing and flow cytometry analysis of immune cells from human peripheral blood. We investigated the potential effects and mechanisms of CD22 blockade on microglial activity, leukocyte infiltration and CNS demyelination in a mouse model of NMOSD induced by injection of NMOSD patient serum-derived AQP4-IgG and human complement.

Results: Single-cell sequencing and flow cytometry analysis revealed that CD22 was expressed in B cells, neutrophils, monocytes and microglia-derived exosomes in human peripheral blood from NMOSD patients and controls (n = 5 per group). In a mouse model of NMOSD, CD22 was expressed in B cells, neutrophils, monocytes and microglia (n = 8 per group). In NMOSD mice, CD22 blockade significantly increased the number of CNS lesions, astrocyte loss and demyelination, accompanied by increased inflammatory activity and phagocytosis in microglia. Furthermore, the detrimental effects of CD22 blockade were significantly alleviated in NMOSD mice subjected to depletion of microglia or Gr-1+ myeloid cells, suggesting the involvement of microglia and peripheral Gr-1+ myeloid cells. Additionally, CD22 blockade also led to significantly reduced phosphorylation of SYK and GSK3β in NMOSD. Notably, the detrimental effects of CD22 blockade were greatly diminished in NMOSD mice receiving the phosphorylated SYK inhibitor R406.

Conclusions: Our findings revealed a previously unrecognized role of CD22 as a key molecular switch that governs the detrimental effects of microglia and Gr-1+ myeloid cells in NMOSD, which paves the way for the future design of immune therapies for NMOSD.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CD22阻断加剧视神经脊髓炎谱系障碍的神经炎症。
背景:视神经脊髓炎谱系障碍(NMOSD)是一种自身抗体引发的中枢神经系统(CNS)脱髓鞘疾病,主要影响脊髓、视神经和脑干。在中枢神经系统损伤的第一反应者中,小胶质细胞是驱动NMOSD病变形成的重要参与者。然而,控制NMOSD中小胶质细胞有害活性的关键分子开关尚不清楚。CD22控制先天免疫和适应性免疫的活性。在这项研究中,我们研究了CD22调节小胶质细胞活性、神经炎症和中枢神经系统病变形成的程度和机制。方法:通过对人外周血免疫细胞进行单细胞测序和流式细胞术分析,确定CD22在NMOSD中的表达谱。在注射NMOSD患者血清源性AQP4-IgG和人补体诱导的NMOSD小鼠模型中,我们研究了CD22阻断对小胶质细胞活性、白细胞浸润和中枢神经系统脱髓鞘的潜在影响和机制。结果:单细胞测序和流式细胞术分析显示,CD22在NMOSD患者和对照组的人外周血B细胞、中性粒细胞、单核细胞和小胶质细胞来源的外泌体中表达(每组n = 5)。在小鼠NMOSD模型中,CD22在B细胞、中性粒细胞、单核细胞和小胶质细胞中表达(每组n = 8)。在NMOSD小鼠中,CD22阻断显著增加了中枢神经系统病变数量、星形胶质细胞损失和脱髓鞘,并伴有小胶质细胞炎症活性和吞噬作用的增加。此外,在小胶质细胞或Gr-1+髓样细胞缺失的NMOSD小鼠中,CD22阻断的有害影响显著减轻,提示小胶质细胞和外周Gr-1+髓样细胞参与其中。此外,CD22阻断也导致NMOSD中SYK和GSK3β磷酸化显著降低。值得注意的是,在接受磷酸化SYK抑制剂R406的NMOSD小鼠中,CD22阻断的有害影响大大减轻。结论:我们的研究结果揭示了CD22作为控制小胶质细胞和Gr-1+髓样细胞在NMOSD中的有害作用的关键分子开关的作用,这为未来设计NMOSD的免疫疗法铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Neuroinflammation
Journal of Neuroinflammation 医学-神经科学
CiteScore
15.90
自引率
3.20%
发文量
276
审稿时长
1 months
期刊介绍: The Journal of Neuroinflammation is a peer-reviewed, open access publication that emphasizes the interaction between the immune system, particularly the innate immune system, and the nervous system. It covers various aspects, including the involvement of CNS immune mediators like microglia and astrocytes, the cytokines and chemokines they produce, and the influence of peripheral neuro-immune interactions, T cells, monocytes, complement proteins, acute phase proteins, oxidative injury, and related molecular processes. Neuroinflammation is a rapidly expanding field that has significantly enhanced our knowledge of chronic neurological diseases. It attracts researchers from diverse disciplines such as pathology, biochemistry, molecular biology, genetics, clinical medicine, and epidemiology. Substantial contributions to this field have been made through studies involving populations, patients, postmortem tissues, animal models, and in vitro systems. The Journal of Neuroinflammation consolidates research that centers around common pathogenic processes. It serves as a platform for integrative reviews and commentaries in this field.
期刊最新文献
Characteristics of TSPO expression in marmoset EAE. Sex chromosomes and sex hormones differently shape microglial properties during normal physiological conditions in the adult mouse hippocampus. Targeting NF-kappaB-inducing kinase shapes B-cell homeostasis in myasthenia gravis. Cross-species comparisons between pigs and mice reveal conserved sex-specific intraspinal inflammatory responses after spinal cord injury. Therapeutic potential of targeting the IRF2/POSTN/Notch1 axis in nucleus pulposus cells for intervertebral disc degeneration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1