Microarray integrated spatial transcriptomics (MIST) for affordable and robust digital pathology.

IF 3.5 2区 生物学 Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY NPJ Systems Biology and Applications Pub Date : 2024-11-30 DOI:10.1038/s41540-024-00462-1
Juwayria, Priyansh Shrivastava, Kaustar Yadav, Sourabh Das, Shubham Mittal, Sunil Kumar, Deepali Jain, Prabhat Singh Malik, Ishaan Gupta
{"title":"Microarray integrated spatial transcriptomics (MIST) for affordable and robust digital pathology.","authors":"Juwayria, Priyansh Shrivastava, Kaustar Yadav, Sourabh Das, Shubham Mittal, Sunil Kumar, Deepali Jain, Prabhat Singh Malik, Ishaan Gupta","doi":"10.1038/s41540-024-00462-1","DOIUrl":null,"url":null,"abstract":"<p><p>10X Visium, a popular Spatial transcriptomics (ST) method, faces limited adoption due to its high cost and restricted sample usage per slide. To address these issues, we propose Microarray Integrated Spatial Transcriptomics (MIST), combining conventional tissue microarray (TMA) with Visium, using laser-cutting and 3D printing to enhance slide throughput. Our design facilitates independent replication and customization in individual labs to suit specific experimental needs. We provide a step-by-step guide from designing TMAs to the library preparation step. We demonstrate MIST's cost-effectiveness and technical benefits over Visium and GeoMx Nanostring. We also introduce 'AnnotateMap', a novel computational tool for efficient analysis of multiple ROIs processed through MIST.</p>","PeriodicalId":19345,"journal":{"name":"NPJ Systems Biology and Applications","volume":"10 1","pages":"142"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11608264/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Systems Biology and Applications","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41540-024-00462-1","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

10X Visium, a popular Spatial transcriptomics (ST) method, faces limited adoption due to its high cost and restricted sample usage per slide. To address these issues, we propose Microarray Integrated Spatial Transcriptomics (MIST), combining conventional tissue microarray (TMA) with Visium, using laser-cutting and 3D printing to enhance slide throughput. Our design facilitates independent replication and customization in individual labs to suit specific experimental needs. We provide a step-by-step guide from designing TMAs to the library preparation step. We demonstrate MIST's cost-effectiveness and technical benefits over Visium and GeoMx Nanostring. We also introduce 'AnnotateMap', a novel computational tool for efficient analysis of multiple ROIs processed through MIST.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
微阵列集成空间转录组学(MIST)可负担得起和强大的数字病理学。
10X Visium是一种流行的空间转录组学(ST)方法,由于其高成本和每张幻灯片的样本使用限制,其采用受到限制。为了解决这些问题,我们提出了微阵列集成空间转录组学(MIST),将传统的组织微阵列(TMA)与Visium相结合,使用激光切割和3D打印来提高载玻片的吞吐量。我们的设计便于在个别实验室进行独立复制和定制,以满足特定的实验需求。我们提供从设计tma到库准备步骤的逐步指南。我们展示了MIST相对于Visium和GeoMx纳米管柱的成本效益和技术优势。我们还介绍了“AnnotateMap”,这是一种新的计算工具,用于有效分析通过MIST处理的多个roi。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
NPJ Systems Biology and Applications
NPJ Systems Biology and Applications Mathematics-Applied Mathematics
CiteScore
5.80
自引率
0.00%
发文量
46
审稿时长
8 weeks
期刊介绍: npj Systems Biology and Applications is an online Open Access journal dedicated to publishing the premier research that takes a systems-oriented approach. The journal aims to provide a forum for the presentation of articles that help define this nascent field, as well as those that apply the advances to wider fields. We encourage studies that integrate, or aid the integration of, data, analyses and insight from molecules to organisms and broader systems. Important areas of interest include not only fundamental biological systems and drug discovery, but also applications to health, medical practice and implementation, big data, biotechnology, food science, human behaviour, broader biological systems and industrial applications of systems biology. We encourage all approaches, including network biology, application of control theory to biological systems, computational modelling and analysis, comprehensive and/or high-content measurements, theoretical, analytical and computational studies of system-level properties of biological systems and computational/software/data platforms enabling such studies.
期刊最新文献
Cross-species transcriptomics translation reveals a role for the unfolded protein response in Mycobacterium tuberculosis infection. Deep learning for detecting and early predicting chronic obstructive pulmonary disease from spirogram time series. Mathematical modeling of multicellular tumor spheroids quantifies inter-patient and intra-tumor heterogeneity. Overall biomass yield on multiple nutrient sources. Modeling critical dosing strategies for stromal-induced resistance to cancer therapy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1