A transphyletic study of metazoan β-catenin protein complexes.

IF 1.7 3区 生物学 Q2 ZOOLOGY Zoological Letters Pub Date : 2024-12-02 DOI:10.1186/s40851-024-00243-y
Ivan Mbogo, Chihiro Kawano, Ryotaro Nakamura, Yuko Tsuchiya, Alejandro Villar-Briones, Yoshitoshi Hirao, Yuuri Yasuoka, Eisuke Hayakawa, Kentaro Tomii, Hiroshi Watanabe
{"title":"A transphyletic study of metazoan β-catenin protein complexes.","authors":"Ivan Mbogo, Chihiro Kawano, Ryotaro Nakamura, Yuko Tsuchiya, Alejandro Villar-Briones, Yoshitoshi Hirao, Yuuri Yasuoka, Eisuke Hayakawa, Kentaro Tomii, Hiroshi Watanabe","doi":"10.1186/s40851-024-00243-y","DOIUrl":null,"url":null,"abstract":"<p><p>Beta-catenin is essential for diverse biological processes, such as body axis determination and cell differentiation, during metazoan embryonic development. Beta-catenin is thought to exert such functions through complexes formed with various proteins. Although β-catenin complex proteins have been identified in several bilaterians, little is known about the structural and functional properties of β-catenin complexes in early metazoan evolution. In the present study, we performed a comparative analysis of β-catenin sequences in nonbilaterian lineages that diverged early in metazoan evolution. We also carried out transphyletic function experiments with β-catenin from nonbilaterian metazoans using developing Xenopus embryos, including secondary axis induction in embryos and proteomic analysis of β-catenin protein complexes. Comparative functional analysis of nonbilaterian β-catenins demonstrated sequence characteristics important for β-catenin functions, and the deep origin and evolutionary conservation of the cadherin-catenin complex. Proteins that co-immunoprecipitated with β-catenin included several proteins conserved among metazoans. These data provide new insights into the conserved repertoire of β-catenin complexes.</p>","PeriodicalId":54280,"journal":{"name":"Zoological Letters","volume":"10 1","pages":"20"},"PeriodicalIF":1.7000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11613877/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zoological Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s40851-024-00243-y","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ZOOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Beta-catenin is essential for diverse biological processes, such as body axis determination and cell differentiation, during metazoan embryonic development. Beta-catenin is thought to exert such functions through complexes formed with various proteins. Although β-catenin complex proteins have been identified in several bilaterians, little is known about the structural and functional properties of β-catenin complexes in early metazoan evolution. In the present study, we performed a comparative analysis of β-catenin sequences in nonbilaterian lineages that diverged early in metazoan evolution. We also carried out transphyletic function experiments with β-catenin from nonbilaterian metazoans using developing Xenopus embryos, including secondary axis induction in embryos and proteomic analysis of β-catenin protein complexes. Comparative functional analysis of nonbilaterian β-catenins demonstrated sequence characteristics important for β-catenin functions, and the deep origin and evolutionary conservation of the cadherin-catenin complex. Proteins that co-immunoprecipitated with β-catenin included several proteins conserved among metazoans. These data provide new insights into the conserved repertoire of β-catenin complexes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Zoological Letters
Zoological Letters Agricultural and Biological Sciences-Animal Science and Zoology
CiteScore
3.60
自引率
0.00%
发文量
12
审稿时长
10 weeks
期刊介绍: Zoological Letters is an open access journal that publishes new and important findings in the zoological sciences. As a sister journal to Zoological Science, Zoological Letters covers a wide range of basic fields of zoology, from taxonomy to bioinformatics. We also welcome submissions of paleontology reports as part of our effort to contribute to the development of new perspectives in evolutionary zoology. Our goal is to serve as a global publishing forum for fundamental researchers in all fields of zoology.
期刊最新文献
Spatially ordered recruitment of fast muscles in accordance with movement strengths in larval zebrafish. Ecology of endolithic bryozoans: colony development, growth rates and interactions of species in the genus Immergentia. Evolution of wing scales in Diptera documented by fossils. The lost generation of Pemphigus populiglobuli (Hemiptera, Aphididae): exploring the taxonomy of the Svalbard aphids of genus Pemphigus. A transphyletic study of metazoan β-catenin protein complexes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1