Cyclodextrins as nanocarriers of hydrophobic silicon phthalocyanine dichloride for the enhancement of photodynamic therapy effect.

IF 2.3 4区 医学 Q3 ENGINEERING, BIOMEDICAL Journal of Biomaterials Applications Pub Date : 2024-12-07 DOI:10.1177/08853282241306858
Eleni Georgiopoulou, Eleni Kavetsou, Eleni Alexandratou, Anastasia Detsi, Konstantinos Politopoulos
{"title":"Cyclodextrins as nanocarriers of hydrophobic silicon phthalocyanine dichloride for the enhancement of photodynamic therapy effect.","authors":"Eleni Georgiopoulou, Eleni Kavetsou, Eleni Alexandratou, Anastasia Detsi, Konstantinos Politopoulos","doi":"10.1177/08853282241306858","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, silicon phthalocyanine dichloride (SiCl<sub>2</sub>Pc) was successfully encapsulated in β-cyclodextrin (β-CD) and hydroxy-propyl-β-cyclodextrin (HP-β-CD) using the kneading method. Dynamic Light Scattering (DLS) demonstrated complexes of various hydrodynamic diameters with moderate stability in aqueous solutions. Their structural characterization by Infrared Spectroscopy (FT- IR) indicated that a part of phthalocyanine is located inside the cyclodextrin cavity. Both photophysical and photochemical studies showed that phthalocyanine's encapsulation in cyclodextrins increased its aqueous solubility. The photodynamic studies against A431 cancer cell line indicated that the complexes are more effective than pure SiCl<sub>2</sub>Pc. Pure SiCl<sub>2</sub>Pc's photodynamic effect is characterized as dose-dependent, whereas both complexes presented a biphasic dose-response photodynamic effect. For the highest energy dose of 3.24 J/cm<sup>2</sup>, pure SiCl<sub>2</sub>Pc induced mild cell toxicity. SiCl<sub>2</sub>Pc-β-CD complex was the most promising photosensitizer, exhibiting the highest photodynamic effect when irradiated at 2.16 J/cm<sup>2</sup>.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"8853282241306858"},"PeriodicalIF":2.3000,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomaterials Applications","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/08853282241306858","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, silicon phthalocyanine dichloride (SiCl2Pc) was successfully encapsulated in β-cyclodextrin (β-CD) and hydroxy-propyl-β-cyclodextrin (HP-β-CD) using the kneading method. Dynamic Light Scattering (DLS) demonstrated complexes of various hydrodynamic diameters with moderate stability in aqueous solutions. Their structural characterization by Infrared Spectroscopy (FT- IR) indicated that a part of phthalocyanine is located inside the cyclodextrin cavity. Both photophysical and photochemical studies showed that phthalocyanine's encapsulation in cyclodextrins increased its aqueous solubility. The photodynamic studies against A431 cancer cell line indicated that the complexes are more effective than pure SiCl2Pc. Pure SiCl2Pc's photodynamic effect is characterized as dose-dependent, whereas both complexes presented a biphasic dose-response photodynamic effect. For the highest energy dose of 3.24 J/cm2, pure SiCl2Pc induced mild cell toxicity. SiCl2Pc-β-CD complex was the most promising photosensitizer, exhibiting the highest photodynamic effect when irradiated at 2.16 J/cm2.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
以环糊精为纳米载体的疏水二氯化酞菁硅增强光动力治疗效果。
本研究将酞菁二氯化硅(SiCl2Pc)成功地用捏合法包封在β-环糊精(β-CD)和羟丙基-β-环糊精(HP-β-CD)中。动态光散射(DLS)证明了在水溶液中具有中等稳定性的各种水动力直径的配合物。红外光谱(FT- IR)表征表明,环糊精腔内存在部分酞菁。光物理和光化学研究表明,环糊精包封酞菁提高了其水溶性。对A431癌细胞的光动力学研究表明,该配合物比纯SiCl2Pc更有效。纯SiCl2Pc的光动力效应是剂量依赖的,而这两种配合物都表现出双相的剂量响应光动力效应。当能量最高剂量为3.24 J/cm2时,纯SiCl2Pc产生轻微的细胞毒性。SiCl2Pc-β-CD配合物是最有前途的光敏剂,当辐照强度为2.16 J/cm2时,其光动力效应最高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Biomaterials Applications
Journal of Biomaterials Applications 工程技术-材料科学:生物材料
CiteScore
5.10
自引率
3.40%
发文量
144
审稿时长
1.5 months
期刊介绍: The Journal of Biomaterials Applications is a fully peer reviewed international journal that publishes original research and review articles that emphasize the development, manufacture and clinical applications of biomaterials. Peer-reviewed articles by biomedical specialists from around the world cover: New developments in biomaterials, R&D, properties and performance, evaluation and applications Applications in biomedical materials and devices - from sutures and wound dressings to biosensors and cardiovascular devices Current findings in biological compatibility/incompatibility of biomaterials The Journal of Biomaterials Applications publishes original articles that emphasize the development, manufacture and clinical applications of biomaterials. Biomaterials continue to be one of the most rapidly growing areas of research in plastics today and certainly one of the biggest technical challenges, since biomaterial performance is dependent on polymer compatibility with the aggressive biological environment. The Journal cuts across disciplines and focuses on medical research and topics that present the broadest view of practical applications of biomaterials in actual clinical use. The Journal of Biomaterial Applications is devoted to new and emerging biomaterials technologies, particularly focusing on the many applications which are under development at industrial biomedical and polymer research facilities, as well as the ongoing activities in academic, medical and applied clinical uses of devices.
期刊最新文献
Comprehensive review of 3D printing techniques emphasizing thermal characterization in biomedical prototyping. Multifunctional electrospinning periosteum: Development status and prospect. Gingival keratinocyte adhesion on atomic layer-deposited hydroxyapatite coated titanium. Impact of composition and surfactant-templating on mesoporous bioactive glasses structural evolution, bioactivity, and drug delivery property. Investigation of polyvinylpyrrolidone-catechol-derived chitosan nanoconjugates allowed for kidney-targeted treatment of cisplatin-induced acute kidney injury and nursing care management.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1