Mu-Yue Zheng, Hao Zheng, Yan Zeng, Tong Sun, Fang-Zhong Zhang, Yu-Lin Wang, Hai-Shuang Wang, Rong-Guang Lin
{"title":"Enhanced targeted drug delivery to hepatocellular carcinoma using Cucurbit[6]uril-modified ZIF-8 nanoparticle.","authors":"Mu-Yue Zheng, Hao Zheng, Yan Zeng, Tong Sun, Fang-Zhong Zhang, Yu-Lin Wang, Hai-Shuang Wang, Rong-Guang Lin","doi":"10.1177/08853282241306836","DOIUrl":null,"url":null,"abstract":"<p><p>Building on our innovative approach to combatting cancer, this study explores the development of a sophisticated hybrid nanocarrier system leveraging the unique properties of allyl oxide cucurbit[6]uril with galactose clusters (AOQ[6]@Gal) to modify ZIF-8 nanoparticles. These nanoparticles are designed to encapsulate and efficiently deliver the anticancer drugs doxorubicin (DOX) and curcumin (CUR), enhancing their water solubility and stability, while also providing active targeting towards hepatocellular carcinoma cells. The comprehensive characterization of AOQ[6]@Gal@ZIF-8@Drug nanoparticles revealed promising outcomes, including drug loading efficiencies of 9.7% for DOX and 8.3% for CUR, alongside a pH-responsive release profile that ensures effective drug delivery in the tumor microenvironment. Cytotoxicity studies underscored the hybrid system's superior safety profile, exhibiting minimal toxicity towards normal hepatocytes HL7702 and pronounced cytotoxic effects against hepatocellular carcinoma cells HepG2. These results highlight the hybrid nanocarrier's potential as a targeted, efficient, and safe platform for the delivery of chemotherapy agents in the treatment of liver cancer.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"8853282241306836"},"PeriodicalIF":2.3000,"publicationDate":"2024-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomaterials Applications","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/08853282241306836","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Building on our innovative approach to combatting cancer, this study explores the development of a sophisticated hybrid nanocarrier system leveraging the unique properties of allyl oxide cucurbit[6]uril with galactose clusters (AOQ[6]@Gal) to modify ZIF-8 nanoparticles. These nanoparticles are designed to encapsulate and efficiently deliver the anticancer drugs doxorubicin (DOX) and curcumin (CUR), enhancing their water solubility and stability, while also providing active targeting towards hepatocellular carcinoma cells. The comprehensive characterization of AOQ[6]@Gal@ZIF-8@Drug nanoparticles revealed promising outcomes, including drug loading efficiencies of 9.7% for DOX and 8.3% for CUR, alongside a pH-responsive release profile that ensures effective drug delivery in the tumor microenvironment. Cytotoxicity studies underscored the hybrid system's superior safety profile, exhibiting minimal toxicity towards normal hepatocytes HL7702 and pronounced cytotoxic effects against hepatocellular carcinoma cells HepG2. These results highlight the hybrid nanocarrier's potential as a targeted, efficient, and safe platform for the delivery of chemotherapy agents in the treatment of liver cancer.
期刊介绍:
The Journal of Biomaterials Applications is a fully peer reviewed international journal that publishes original research and review articles that emphasize the development, manufacture and clinical applications of biomaterials.
Peer-reviewed articles by biomedical specialists from around the world cover:
New developments in biomaterials, R&D, properties and performance, evaluation and applications
Applications in biomedical materials and devices - from sutures and wound dressings to biosensors and cardiovascular devices
Current findings in biological compatibility/incompatibility of biomaterials
The Journal of Biomaterials Applications publishes original articles that emphasize the development, manufacture and clinical applications of biomaterials. Biomaterials continue to be one of the most rapidly growing areas of research in plastics today and certainly one of the biggest technical challenges, since biomaterial performance is dependent on polymer compatibility with the aggressive biological environment. The Journal cuts across disciplines and focuses on medical research and topics that present the broadest view of practical applications of biomaterials in actual clinical use.
The Journal of Biomaterial Applications is devoted to new and emerging biomaterials technologies, particularly focusing on the many applications which are under development at industrial biomedical and polymer research facilities, as well as the ongoing activities in academic, medical and applied clinical uses of devices.