Machine learning approaches for predicting craniofacial anomalies with graph neural networks.

Colten Alme, Harun Pirim, Yusuf Akbulut
{"title":"Machine learning approaches for predicting craniofacial anomalies with graph neural networks.","authors":"Colten Alme, Harun Pirim, Yusuf Akbulut","doi":"10.1016/j.compbiolchem.2024.108294","DOIUrl":null,"url":null,"abstract":"<p><p>This study explores the use of machine learning algorithms, including traditional approaches and graph neural networks (GNNs), to predict certain diseases by analyzing protein-protein interactions. Protein-protein interactions (PPIs) are complex, multifaceted, and sometimes ever-changing. Therefore, analyzing PPIs and making predictions based on them present significant challenges to traditional computational techniques. However, machine learning, particularly GNNs, with their powerful ability to identify complex patterns within large, convoluted datasets, emerge as compelling and revolutionary tools for unraveling these intricate biological networks. We apply machine learning, aided by SHAP explainability and GNNs, on three networks of distinct sizes, ranging from small to large. While the ML results highlight the higher importance of network features in prediction, GNNs exhibit superior accuracy.</p>","PeriodicalId":93952,"journal":{"name":"Computational biology and chemistry","volume":"115 ","pages":"108294"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational biology and chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.compbiolchem.2024.108294","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores the use of machine learning algorithms, including traditional approaches and graph neural networks (GNNs), to predict certain diseases by analyzing protein-protein interactions. Protein-protein interactions (PPIs) are complex, multifaceted, and sometimes ever-changing. Therefore, analyzing PPIs and making predictions based on them present significant challenges to traditional computational techniques. However, machine learning, particularly GNNs, with their powerful ability to identify complex patterns within large, convoluted datasets, emerge as compelling and revolutionary tools for unraveling these intricate biological networks. We apply machine learning, aided by SHAP explainability and GNNs, on three networks of distinct sizes, ranging from small to large. While the ML results highlight the higher importance of network features in prediction, GNNs exhibit superior accuracy.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Classification and prediction of variants associated with hearing loss using sequence information in the vicinity of mutation sites. Development of a centrosome amplification-associated signature in kidney renal clear cell carcinoma based on multiple machine learning models. In-silico identification and validation of Silibinin as a dual inhibitor for ENO1 and GLUT4 to curtail EMT signaling and TNBC progression. Improving binding affinity prediction by emphasizing local features of drug and protein. Exploring immune gene expression and potential regulatory mechanisms in anaplastic thyroid carcinoma using a combination of single-cell and bulk RNA sequencing data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1