RNAi-biofungicides: a quantum leap for tree fungal pathogen management.

IF 8.1 2区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Critical Reviews in Biotechnology Pub Date : 2024-12-08 DOI:10.1080/07388551.2024.2430478
Gothandapani Sellamuthu, Amrita Chakraborty, Ramesh R Vetukuri, Saravanasakthi Sarath, Amit Roy
{"title":"RNAi-biofungicides: a quantum leap for tree fungal pathogen management.","authors":"Gothandapani Sellamuthu, Amrita Chakraborty, Ramesh R Vetukuri, Saravanasakthi Sarath, Amit Roy","doi":"10.1080/07388551.2024.2430478","DOIUrl":null,"url":null,"abstract":"<p><p>Fungal diseases threaten the forest ecosystem, impacting tree health, productivity, and biodiversity. Conventional approaches to combating diseases, such as biological control or fungicides, often reach limits regarding efficacy, resistance, non-target organisms, and environmental impact, enforcing alternative approaches. From an environmental and ecological standpoint, an RNA interference (RNAi) mediated double-stranded RNA (dsRNA)-based strategy can effectively manage forest fungal pathogens. The RNAi approach explicitly targets and suppresses gene expression through a conserved regulatory mechanism. Recently, it has evolved to be an effective tool in combating fungal diseases and promoting sustainable forest management approaches. RNAi bio-fungicides provide efficient and eco-friendly disease control alternatives using species-specific gene targeting, minimizing the off-target effects. With accessible data on fungal disease outbreaks, genomic resources, and effective delivery systems, RNAi-based biofungicides can be a promising tool for managing fungal pathogens in forests. However, concerns regarding the environmental fate of RNAi molecules and their potential impact on non-target organisms require an extensive investigation on a case-to-case basis. The current review critically evaluates the feasibility of RNAi bio-fungicides against forest pathogens by delving into the accessible delivery methods, environmental persistence, regulatory aspects, cost-effectiveness, community acceptance, and plausible future of RNAi-based forest protection products.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"1-28"},"PeriodicalIF":8.1000,"publicationDate":"2024-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/07388551.2024.2430478","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Fungal diseases threaten the forest ecosystem, impacting tree health, productivity, and biodiversity. Conventional approaches to combating diseases, such as biological control or fungicides, often reach limits regarding efficacy, resistance, non-target organisms, and environmental impact, enforcing alternative approaches. From an environmental and ecological standpoint, an RNA interference (RNAi) mediated double-stranded RNA (dsRNA)-based strategy can effectively manage forest fungal pathogens. The RNAi approach explicitly targets and suppresses gene expression through a conserved regulatory mechanism. Recently, it has evolved to be an effective tool in combating fungal diseases and promoting sustainable forest management approaches. RNAi bio-fungicides provide efficient and eco-friendly disease control alternatives using species-specific gene targeting, minimizing the off-target effects. With accessible data on fungal disease outbreaks, genomic resources, and effective delivery systems, RNAi-based biofungicides can be a promising tool for managing fungal pathogens in forests. However, concerns regarding the environmental fate of RNAi molecules and their potential impact on non-target organisms require an extensive investigation on a case-to-case basis. The current review critically evaluates the feasibility of RNAi bio-fungicides against forest pathogens by delving into the accessible delivery methods, environmental persistence, regulatory aspects, cost-effectiveness, community acceptance, and plausible future of RNAi-based forest protection products.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
rnai生物杀菌剂:树木真菌病原体管理的巨大飞跃。
真菌病害威胁着森林生态系统,影响树木健康、生产力和生物多样性。防治疾病的传统方法,如生物防治或杀菌剂,在功效、耐药性、非目标生物和环境影响方面往往达到极限,因此必须采用替代方法。从环境和生态的角度来看,RNA干扰(RNAi)介导的双链RNA (dsRNA)策略可以有效地管理森林真菌病原体。RNAi方法通过保守的调控机制明确靶向和抑制基因表达。最近,它已发展成为防治真菌疾病和促进可持续森林管理方法的有效工具。RNAi生物杀菌剂利用物种特异性基因靶向提供了高效和环保的疾病控制替代方案,最大限度地减少了脱靶效应。有了可获得的真菌疾病暴发数据、基因组资源和有效的递送系统,基于rnai的生物杀菌剂可以成为管理森林真菌病原体的一种有前途的工具。然而,关于RNAi分子的环境命运及其对非目标生物的潜在影响的担忧需要在个案基础上进行广泛的调查。本综述通过深入研究基于RNAi的森林保护产品的可获得的递送方法、环境持久性、监管方面、成本效益、社区接受度和合理的未来,批判性地评估了RNAi生物杀菌剂对抗森林病原体的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Critical Reviews in Biotechnology
Critical Reviews in Biotechnology 工程技术-生物工程与应用微生物
CiteScore
20.80
自引率
1.10%
发文量
71
审稿时长
4.8 months
期刊介绍: Biotechnological techniques, from fermentation to genetic manipulation, have become increasingly relevant to the food and beverage, fuel production, chemical and pharmaceutical, and waste management industries. Consequently, academic as well as industrial institutions need to keep abreast of the concepts, data, and methodologies evolved by continuing research. This journal provides a forum of critical evaluation of recent and current publications and, periodically, for state-of-the-art reports from various geographic areas around the world. Contributing authors are recognized experts in their fields, and each article is reviewed by an objective expert to ensure accuracy and objectivity of the presentation.
期刊最新文献
How do probiotics alleviate constipation? A narrative review of mechanisms. Antimicrobials from endophytes as novel therapeutics to counter drug-resistant pathogens. A comprehensive review on the recent advances for 5-aminolevulinic acid production by the engineered bacteria. Escherichia coli and Pichia pastoris: microbial cell-factory platform for -full-length IgG production. 3D printing: trends and approaches toward achieving long-term sustainability in the food industry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1