Heterogeneous Graph Representation Learning Framework for Resting-State Functional Connectivity Analysis

Guangqi Wen;Peng Cao;Lingwen Liu;Maochun Hao;Siyu Liu;Junjie Zheng;Jinzhu Yang;Osmar R. Zaiane;Fei Wang
{"title":"Heterogeneous Graph Representation Learning Framework for Resting-State Functional Connectivity Analysis","authors":"Guangqi Wen;Peng Cao;Lingwen Liu;Maochun Hao;Siyu Liu;Junjie Zheng;Jinzhu Yang;Osmar R. Zaiane;Fei Wang","doi":"10.1109/TMI.2024.3512603","DOIUrl":null,"url":null,"abstract":"Brain functional connectivity analysis is important for understanding brain development and brain disorders. Recent studies have suggested that the variations of functional connectivity among multiple subnetworks are closely related to the development of diseases. However, the existing works failed to sufficiently capture the complex correlation patterns among the subnetworks and ignored the learning of heterogeneous structural information across the subnetworks. To address these issues, we formulate a new paradigm for constructing and analyzing high-order heterogeneous functional brain networks via meta-paths and propose a Heterogeneous Graph representation Learning framework (BrainHGL). Our framework consists of three key aspects: 1) Meta-path encoding for capturing rich heterogeneous topological information, 2) Meta-path interaction for exploiting complex association patterns among subnetworks and 3) Meta-path aggregation for better meta-path fusion. To the best of our knowledge, we are the first to formulate the heterogeneous brain networks for better exploiting the relationship between the subnetwork interactions and the mental disease We evaluate BrainHGL on the private center Nanjing Medical University dataset (center NMU) and the public Autism Brain Imaging Data Exchange (ABIDE) dataset. We demonstrate the effectiveness of the proposed model across various disease classification tasks, including major depression disorder (MDD), bipolar disorder (BD) and autism spectrum disorder (ASD) diagnoses. In addition, our model provides deeper insights into disease interpretability, including the critical brain subnetwork connectivities, brain regions and functional pathways. We also identified disease subtypes consistent with previous neuroscientific studies by our model, which benefits the disease identification performance. The code is available at <uri>https://github.com/IntelliDAL/Graph/BrainHGL</uri>","PeriodicalId":94033,"journal":{"name":"IEEE transactions on medical imaging","volume":"44 3","pages":"1581-1595"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical imaging","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10781429/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Brain functional connectivity analysis is important for understanding brain development and brain disorders. Recent studies have suggested that the variations of functional connectivity among multiple subnetworks are closely related to the development of diseases. However, the existing works failed to sufficiently capture the complex correlation patterns among the subnetworks and ignored the learning of heterogeneous structural information across the subnetworks. To address these issues, we formulate a new paradigm for constructing and analyzing high-order heterogeneous functional brain networks via meta-paths and propose a Heterogeneous Graph representation Learning framework (BrainHGL). Our framework consists of three key aspects: 1) Meta-path encoding for capturing rich heterogeneous topological information, 2) Meta-path interaction for exploiting complex association patterns among subnetworks and 3) Meta-path aggregation for better meta-path fusion. To the best of our knowledge, we are the first to formulate the heterogeneous brain networks for better exploiting the relationship between the subnetwork interactions and the mental disease We evaluate BrainHGL on the private center Nanjing Medical University dataset (center NMU) and the public Autism Brain Imaging Data Exchange (ABIDE) dataset. We demonstrate the effectiveness of the proposed model across various disease classification tasks, including major depression disorder (MDD), bipolar disorder (BD) and autism spectrum disorder (ASD) diagnoses. In addition, our model provides deeper insights into disease interpretability, including the critical brain subnetwork connectivities, brain regions and functional pathways. We also identified disease subtypes consistent with previous neuroscientific studies by our model, which benefits the disease identification performance. The code is available at https://github.com/IntelliDAL/Graph/BrainHGL
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
静态功能连通性分析的异构图表示学习框架
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Replace2Self: Self-Supervised Denoising based on Voxel Replacing and Image Mixing for Diffusion MRI. Table of Contents Blood Oxygenation Quantification in Multispectral Photoacoustic Tomography Using A Convex Cone Approach. DenseFormer-MoE: A Dense Transformer Foundation Model with Mixture of Experts for Multi-Task Brain Image Analysis. Speckle Denoising of Dynamic Contrast-enhanced Ultrasound using Low-rank Tensor Decomposition.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1