How the Electron-Transfer Cascade is Maintained in Chlorophyll-d Containing Photosystem I.

IF 2.9 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Biochemistry Biochemistry Pub Date : 2024-12-10 DOI:10.1021/acs.biochem.4c00521
Tomoyasu Noji, Keisuke Saito, Hiroshi Ishikita
{"title":"How the Electron-Transfer Cascade is Maintained in Chlorophyll-<i>d</i> Containing Photosystem I.","authors":"Tomoyasu Noji, Keisuke Saito, Hiroshi Ishikita","doi":"10.1021/acs.biochem.4c00521","DOIUrl":null,"url":null,"abstract":"<p><p>Photosystem I (PSI) from <i>Acaryochloris marina</i> utilizes chlorophyll <i>d</i> (Chl<i>d</i>) with a formyl group as its primary pigment, which is more red-shifted than chlorophyll <i>a</i> (Chl<i>a</i>) in PSI from <i>Thermosynechococcus elongatus</i>. Using the cryo-electron microscopy structure and solving the linear Poisson-Boltzmann equation, here we report the redox potential (<i>E</i><sub>m</sub>) values in <i>A. marina</i> PSI. The <i>E</i><sub>m</sub>(Chl<i>d</i>) values at the paired chlorophyll site, [P<sub>A</sub>P<sub>B</sub>], are nearly identical to the corresponding <i>E</i><sub>m</sub>(Chl<i>a</i>) values in <i>T. elongatus</i> PSI, despite Chl<i>d</i> having a 200 mV lower reduction power. The accessory chlorophyll site, A<sub>-1</sub>, in the B branch exhibits an extensive H-bond network with its ligand water molecule, contributing to <i>E</i><sub>m</sub>(A<sub>-1B</sub>) being lower than <i>E</i><sub>m</sub>(A<sub>-1A</sub>). The substitution of pheophytin <i>a</i> (Pheo<i>a</i>) with Chl<i>a</i> at the electron acceptor site, A<sub>0</sub>, decreases <i>E</i><sub>m</sub>(A<sub>0</sub>), resulting in an uphill electron transfer from A<sub>-1</sub>. The impact of the A<sub>-1</sub> formyl group on <i>E</i><sub>m</sub>(A<sub>0</sub>) is offset by the reorientation of the A<sub>0</sub> ester group. It seems likely that Pheo<i>a</i> is necessary for <i>A. marina</i> PSI to maintain the overall electron-transfer cascade characteristic of PSI in its unique light environment.</p>","PeriodicalId":28,"journal":{"name":"Biochemistry Biochemistry","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry Biochemistry","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.biochem.4c00521","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Photosystem I (PSI) from Acaryochloris marina utilizes chlorophyll d (Chld) with a formyl group as its primary pigment, which is more red-shifted than chlorophyll a (Chla) in PSI from Thermosynechococcus elongatus. Using the cryo-electron microscopy structure and solving the linear Poisson-Boltzmann equation, here we report the redox potential (Em) values in A. marina PSI. The Em(Chld) values at the paired chlorophyll site, [PAPB], are nearly identical to the corresponding Em(Chla) values in T. elongatus PSI, despite Chld having a 200 mV lower reduction power. The accessory chlorophyll site, A-1, in the B branch exhibits an extensive H-bond network with its ligand water molecule, contributing to Em(A-1B) being lower than Em(A-1A). The substitution of pheophytin a (Pheoa) with Chla at the electron acceptor site, A0, decreases Em(A0), resulting in an uphill electron transfer from A-1. The impact of the A-1 formyl group on Em(A0) is offset by the reorientation of the A0 ester group. It seems likely that Pheoa is necessary for A. marina PSI to maintain the overall electron-transfer cascade characteristic of PSI in its unique light environment.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Biochemistry Biochemistry
Biochemistry Biochemistry 生物-生化与分子生物学
CiteScore
5.50
自引率
3.40%
发文量
336
审稿时长
1-2 weeks
期刊介绍: Biochemistry provides an international forum for publishing exceptional, rigorous, high-impact research across all of biological chemistry. This broad scope includes studies on the chemical, physical, mechanistic, and/or structural basis of biological or cell function, and encompasses the fields of chemical biology, synthetic biology, disease biology, cell biology, nucleic acid biology, neuroscience, structural biology, and biophysics. In addition to traditional Research Articles, Biochemistry also publishes Communications, Viewpoints, and Perspectives, as well as From the Bench articles that report new methods of particular interest to the biological chemistry community.
期刊最新文献
Discovery of Cryptic Natural Products Using High-Throughput Elicitor Screening on Agar Media. Effects of Ca2+ on the Structure and Dynamics of PIP3 in Model Membranes Containing PC and PS. How the Electron-Transfer Cascade is Maintained in Chlorophyll-d Containing Photosystem I. Octahedral Iron in Catalytic Sites of Endonuclease IV from Staphylococcus aureus and Escherichia coli. A Conserved Lysine in an Ion-Pair with a Catalytic Glutamate Is Critical for U-to-C RNA Editing but Restricts C-to-U RNA Editing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1