Mechanistic Cooperation of the Two Pore-Forming Transmembrane Motifs Regulates the β-Barrel Pore Formation by Listeriolysin O.

IF 2.9 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Biochemistry Biochemistry Pub Date : 2025-01-27 DOI:10.1021/acs.biochem.4c00592
Kusum Lata, Koyel Nandy, Geetika, Kausik Chattopadhyay
{"title":"Mechanistic Cooperation of the Two Pore-Forming Transmembrane Motifs Regulates the β-Barrel Pore Formation by Listeriolysin O.","authors":"Kusum Lata, Koyel Nandy, Geetika, Kausik Chattopadhyay","doi":"10.1021/acs.biochem.4c00592","DOIUrl":null,"url":null,"abstract":"<p><p>Listeriolysin O (LLO) is a potent membrane-damaging pore-forming toxin (PFT) secreted by the bacterial pathogen <i>Listeria monocytogenes</i>. LLO belongs to the family of cholesterol-dependent cytolysins (CDCs), which specifically target cholesterol-containing cell membranes to form oligomeric pores and induce membrane damage. CDCs, including LLO, harbor designated pore-forming motifs. In the soluble monomeric state, these motifs are present as helical segments (two transmembrane helices (TMHs); TMH1 and TMH2), and in the course of oligomeric pore formation, they convert into transmembrane β-hairpins to form the β-barrel scaffold of the CDC pores. Despite their well-established role in forming the β-barrel pore scaffold, precise structural implications of the two distinct TMH motifs and their membrane-insertion mechanism still remain obscure. Here, we show that the two TMH motifs of LLO contribute differently to maintaining the structural integrity of the toxin. While the deletion of TMH1 imposed a more serious defect, truncation of TMH2 was found to have a less severe effect on the structural integrity. Despite showing membrane-binding and oligomerization ability, the TMH2-deleted LLO variant displayed drastically abrogated pore-forming activity, presumably due to compromised membrane-insertion efficacy of the pore-forming TMH motifs. When probed for the membrane-insertion mechanism, we found slower membrane-insertion kinetics for TMH2 than for TMH1. Interestingly, deletion of TMH2 arrested membrane insertion of TMH1, thus suggesting a stringent cooperation between the two TMH motifs in regulating the pore-formation mechanism of LLO. Taken together, our study provides new mechanistic insights regarding the membrane-damaging action of LLO, in the CDC family of PFTs.</p>","PeriodicalId":28,"journal":{"name":"Biochemistry Biochemistry","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry Biochemistry","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.biochem.4c00592","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Listeriolysin O (LLO) is a potent membrane-damaging pore-forming toxin (PFT) secreted by the bacterial pathogen Listeria monocytogenes. LLO belongs to the family of cholesterol-dependent cytolysins (CDCs), which specifically target cholesterol-containing cell membranes to form oligomeric pores and induce membrane damage. CDCs, including LLO, harbor designated pore-forming motifs. In the soluble monomeric state, these motifs are present as helical segments (two transmembrane helices (TMHs); TMH1 and TMH2), and in the course of oligomeric pore formation, they convert into transmembrane β-hairpins to form the β-barrel scaffold of the CDC pores. Despite their well-established role in forming the β-barrel pore scaffold, precise structural implications of the two distinct TMH motifs and their membrane-insertion mechanism still remain obscure. Here, we show that the two TMH motifs of LLO contribute differently to maintaining the structural integrity of the toxin. While the deletion of TMH1 imposed a more serious defect, truncation of TMH2 was found to have a less severe effect on the structural integrity. Despite showing membrane-binding and oligomerization ability, the TMH2-deleted LLO variant displayed drastically abrogated pore-forming activity, presumably due to compromised membrane-insertion efficacy of the pore-forming TMH motifs. When probed for the membrane-insertion mechanism, we found slower membrane-insertion kinetics for TMH2 than for TMH1. Interestingly, deletion of TMH2 arrested membrane insertion of TMH1, thus suggesting a stringent cooperation between the two TMH motifs in regulating the pore-formation mechanism of LLO. Taken together, our study provides new mechanistic insights regarding the membrane-damaging action of LLO, in the CDC family of PFTs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Biochemistry Biochemistry
Biochemistry Biochemistry 生物-生化与分子生物学
CiteScore
5.50
自引率
3.40%
发文量
336
审稿时长
1-2 weeks
期刊介绍: Biochemistry provides an international forum for publishing exceptional, rigorous, high-impact research across all of biological chemistry. This broad scope includes studies on the chemical, physical, mechanistic, and/or structural basis of biological or cell function, and encompasses the fields of chemical biology, synthetic biology, disease biology, cell biology, nucleic acid biology, neuroscience, structural biology, and biophysics. In addition to traditional Research Articles, Biochemistry also publishes Communications, Viewpoints, and Perspectives, as well as From the Bench articles that report new methods of particular interest to the biological chemistry community.
期刊最新文献
Carboxy-Amidated AamAP1-Lys has Superior Conformational Flexibility and Accelerated Killing of Gram-Negative Bacteria. Alternative Role of B/b Knob-Hole Interactions in the Fibrin Assembly. Mechanistic Cooperation of the Two Pore-Forming Transmembrane Motifs Regulates the β-Barrel Pore Formation by Listeriolysin O. A Noncatalytic Cysteine Residue Modulates Cobalamin Reactivity in the Human B12 Processing Enzyme CblC. Functional Characterization of Two Polymerizing Glycosyltransferases for the Addition of N-Acetyl-d-galactosamine to the Capsular Polysaccharide of Campylobacter jejuni.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1