PolyCL: contrastive learning for polymer representation learning via explicit and implicit augmentations†

IF 6.2 Q1 CHEMISTRY, MULTIDISCIPLINARY Digital discovery Pub Date : 2024-11-28 DOI:10.1039/D4DD00236A
Jiajun Zhou, Yijie Yang, Austin M. Mroz and Kim E. Jelfs
{"title":"PolyCL: contrastive learning for polymer representation learning via explicit and implicit augmentations†","authors":"Jiajun Zhou, Yijie Yang, Austin M. Mroz and Kim E. Jelfs","doi":"10.1039/D4DD00236A","DOIUrl":null,"url":null,"abstract":"<p >Polymers play a crucial role in a wide array of applications due to their diverse and tunable properties. Establishing the relationship between polymer representations and their properties is crucial to the computational design and screening of potential polymers <em>via</em> machine learning. The quality of the representation significantly influences the effectiveness of these computational methods. Here, we present a self-supervised contrastive learning paradigm, PolyCL, for learning robust and high-quality polymer representation without the need for labels. Our model combines explicit and implicit augmentation strategies for improved learning performance. The results demonstrate that our model achieves either better, or highly competitive, performances on transfer learning tasks as a feature extractor without an overcomplicated training strategy or hyperparameter optimisation. Further enhancing the efficacy of our model, we conducted extensive analyses on various augmentation combinations used in contrastive learning. This led to identifying the most effective combination to maximise PolyCL's performance.</p>","PeriodicalId":72816,"journal":{"name":"Digital discovery","volume":" 1","pages":" 149-160"},"PeriodicalIF":6.2000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11616009/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital discovery","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/dd/d4dd00236a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Polymers play a crucial role in a wide array of applications due to their diverse and tunable properties. Establishing the relationship between polymer representations and their properties is crucial to the computational design and screening of potential polymers via machine learning. The quality of the representation significantly influences the effectiveness of these computational methods. Here, we present a self-supervised contrastive learning paradigm, PolyCL, for learning robust and high-quality polymer representation without the need for labels. Our model combines explicit and implicit augmentation strategies for improved learning performance. The results demonstrate that our model achieves either better, or highly competitive, performances on transfer learning tasks as a feature extractor without an overcomplicated training strategy or hyperparameter optimisation. Further enhancing the efficacy of our model, we conducted extensive analyses on various augmentation combinations used in contrastive learning. This led to identifying the most effective combination to maximise PolyCL's performance.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过显式和隐式增强的聚合物表征学习的对比学习。
聚合物由于其多样化和可调的特性,在广泛的应用中起着至关重要的作用。建立聚合物表征及其性质之间的关系对于通过机器学习进行潜在聚合物的计算设计和筛选至关重要。表征的质量显著影响这些计算方法的有效性。在这里,我们提出了一个自我监督的对比学习范式,PolyCL,用于学习鲁棒和高质量的聚合物表示,而不需要标签。我们的模型结合了显式和隐式增强策略来提高学习成绩。结果表明,作为特征提取器,我们的模型在迁移学习任务上实现了更好的或高度竞争的性能,而无需过于复杂的训练策略或超参数优化。为了进一步提高模型的有效性,我们对对比学习中使用的各种增强组合进行了广泛的分析。这导致确定最有效的组合,以最大限度地提高PolyCL的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
期刊最新文献
Biophysics-guided uncertainty-aware deep learning uncovers high-affinity plastic-binding peptides. Back cover Predicting hydrogen atom transfer energy barriers using Gaussian process regression. Active learning driven prioritisation of compounds from on-demand libraries targeting the SARS-CoV-2 main protease. ULaMDyn: enhancing excited-state dynamics analysis through streamlined unsupervised learning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1