{"title":"Spike-HAR++: an energy-efficient and lightweight parallel spiking transformer for event-based human action recognition.","authors":"Xinxu Lin, Mingxuan Liu, Hong Chen","doi":"10.3389/fncom.2024.1508297","DOIUrl":null,"url":null,"abstract":"<p><p>Event-based cameras are suitable for human action recognition (HAR) by providing movement perception with highly dynamic range, high temporal resolution, high power efficiency and low latency. Spike Neural Networks (SNNs) are naturally suited to deal with the asynchronous and sparse data from the event cameras due to their spike-based event-driven paradigm, with less power consumption compared to artificial neural networks. In this paper, we propose two end-to-end SNNs, namely Spike-HAR and Spike-HAR++, to introduce spiking transformer into event-based HAR. Spike-HAR includes two novel blocks: a spike attention branch, which enables model to focus on regions with high spike rates, reducing the impact of noise to improve the accuracy, and a parallel spike transformer block with simplified spiking self-attention mechanism, increasing computational efficiency. To better extract crucial information from high-level features, we modify the architecture of the spike attention branch and extend it in Spike-HAR to a higher dimension, proposing Spike-HAR++ to further enhance classification performance. Comprehensive experiments were conducted on four HAR datasets: SL-Animals-DVS, N-LSA64, DVS128 Gesture and DailyAction-DVS, to demonstrate the superior performance of our proposed model. Additionally, the proposed Spike-HAR and Spike-HAR++ require only 0.03 and 0.06 mJ, respectively, to process a sequence of event frames, with model sizes of only 0.7 and 1.8 M. This efficiency positions it as a promising new SNN baseline for the HAR community. Code is available at Spike-HAR++.</p>","PeriodicalId":12363,"journal":{"name":"Frontiers in Computational Neuroscience","volume":"18 ","pages":"1508297"},"PeriodicalIF":2.1000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11628275/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Computational Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fncom.2024.1508297","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Event-based cameras are suitable for human action recognition (HAR) by providing movement perception with highly dynamic range, high temporal resolution, high power efficiency and low latency. Spike Neural Networks (SNNs) are naturally suited to deal with the asynchronous and sparse data from the event cameras due to their spike-based event-driven paradigm, with less power consumption compared to artificial neural networks. In this paper, we propose two end-to-end SNNs, namely Spike-HAR and Spike-HAR++, to introduce spiking transformer into event-based HAR. Spike-HAR includes two novel blocks: a spike attention branch, which enables model to focus on regions with high spike rates, reducing the impact of noise to improve the accuracy, and a parallel spike transformer block with simplified spiking self-attention mechanism, increasing computational efficiency. To better extract crucial information from high-level features, we modify the architecture of the spike attention branch and extend it in Spike-HAR to a higher dimension, proposing Spike-HAR++ to further enhance classification performance. Comprehensive experiments were conducted on four HAR datasets: SL-Animals-DVS, N-LSA64, DVS128 Gesture and DailyAction-DVS, to demonstrate the superior performance of our proposed model. Additionally, the proposed Spike-HAR and Spike-HAR++ require only 0.03 and 0.06 mJ, respectively, to process a sequence of event frames, with model sizes of only 0.7 and 1.8 M. This efficiency positions it as a promising new SNN baseline for the HAR community. Code is available at Spike-HAR++.
期刊介绍:
Frontiers in Computational Neuroscience is a first-tier electronic journal devoted to promoting theoretical modeling of brain function and fostering interdisciplinary interactions between theoretical and experimental neuroscience. Progress in understanding the amazing capabilities of the brain is still limited, and we believe that it will only come with deep theoretical thinking and mutually stimulating cooperation between different disciplines and approaches. We therefore invite original contributions on a wide range of topics that present the fruits of such cooperation, or provide stimuli for future alliances. We aim to provide an interactive forum for cutting-edge theoretical studies of the nervous system, and for promulgating the best theoretical research to the broader neuroscience community. Models of all styles and at all levels are welcome, from biophysically motivated realistic simulations of neurons and synapses to high-level abstract models of inference and decision making. While the journal is primarily focused on theoretically based and driven research, we welcome experimental studies that validate and test theoretical conclusions.
Also: comp neuro