MeTEor: an R Shiny app for exploring longitudinal metabolomics data.

IF 2.4 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Bioinformatics advances Pub Date : 2024-11-14 eCollection Date: 2024-01-01 DOI:10.1093/bioadv/vbae178
Gordon Grabert, Daniel Dehncke, Tushar More, Markus List, Anke R M Kraft, Markus Cornberg, Karsten Hiller, Tim Kacprowski
{"title":"MeTEor: an R Shiny app for exploring longitudinal metabolomics data.","authors":"Gordon Grabert, Daniel Dehncke, Tushar More, Markus List, Anke R M Kraft, Markus Cornberg, Karsten Hiller, Tim Kacprowski","doi":"10.1093/bioadv/vbae178","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>The availability of longitudinal omics data is increasing in metabolomics research. Viewing metabolomics data over time provides detailed insight into biological processes and fosters understanding of how systems react over time. However, the analysis of longitudinal metabolomics data poses various challenges, both in terms of statistical evaluation and visualization.</p><p><strong>Results: </strong>To make explorative analysis of longitudinal data readily available to researchers without formal background in computer science and programming, we present MEtabolite Trajectory ExplORer (MeTEor). MeTEor is an R Shiny app providing a comprehensive set of statistical analysis methods. To demonstrate the capabilities of MeTEor, we replicated the analysis of metabolomics data from a previously published study on COVID-19 patients.</p><p><strong>Availability and implementation: </strong>MeTEor is available as an R package and as a Docker image. Source code and instructions for setting up the app can be found on GitHub (https://github.com/scibiome/meteor). The Docker image is available at Docker Hub (https://hub.docker.com/r/gordomics/meteor). MeTEor has been tested on Microsoft Windows, Unix/Linux, and macOS.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":"4 1","pages":"vbae178"},"PeriodicalIF":2.4000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11631383/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbae178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: The availability of longitudinal omics data is increasing in metabolomics research. Viewing metabolomics data over time provides detailed insight into biological processes and fosters understanding of how systems react over time. However, the analysis of longitudinal metabolomics data poses various challenges, both in terms of statistical evaluation and visualization.

Results: To make explorative analysis of longitudinal data readily available to researchers without formal background in computer science and programming, we present MEtabolite Trajectory ExplORer (MeTEor). MeTEor is an R Shiny app providing a comprehensive set of statistical analysis methods. To demonstrate the capabilities of MeTEor, we replicated the analysis of metabolomics data from a previously published study on COVID-19 patients.

Availability and implementation: MeTEor is available as an R package and as a Docker image. Source code and instructions for setting up the app can be found on GitHub (https://github.com/scibiome/meteor). The Docker image is available at Docker Hub (https://hub.docker.com/r/gordomics/meteor). MeTEor has been tested on Microsoft Windows, Unix/Linux, and macOS.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
期刊最新文献
Predicting CRISPR-Cas9 off-target effects in human primary cells using bidirectional LSTM with BERT embedding. Genal: a Python toolkit for genetic risk scoring and Mendelian randomization. QOMIC: quantum optimization for motif identification. SurfR: Riding the wave of RNA-seq data with a comprehensive bioconductor package to identify surface protein-coding genes. Exploring the role of the Rab network in epithelial-to-mesenchymal transition.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1