Negative binomial mixture model for identification of noise in antibody-antigen specificity predictions from single-cell data.

IF 2.4 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Bioinformatics advances Pub Date : 2024-12-04 eCollection Date: 2024-01-01 DOI:10.1093/bioadv/vbae170
Perry T Wasdin, Alexandra A Abu-Shmais, Michael W Irvin, Matthew J Vukovich, Ivelin S Georgiev
{"title":"Negative binomial mixture model for identification of noise in antibody-antigen specificity predictions from single-cell data.","authors":"Perry T Wasdin, Alexandra A Abu-Shmais, Michael W Irvin, Matthew J Vukovich, Ivelin S Georgiev","doi":"10.1093/bioadv/vbae170","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>LIBRA-seq (linking B cell receptor to antigen specificity by sequencing) provides a powerful tool for interrogating the antigen-specific B cell compartment and identifying antibodies against antigen targets of interest. Identification of noise in single-cell B cell receptor sequencing data, such as LIBRA-seq, is critical for improving antigen binding predictions for downstream applications including antibody discovery and machine learning technologies.</p><p><strong>Results: </strong>In this study, we present a method for denoising LIBRA-seq data by clustering antigen counts into signal and noise components with a negative binomial mixture model. This approach leverages single-cell sequencing reads from a large, multi-donor dataset described in a recent LIBRA-seq study to develop a data-driven means for identification of technical noise. We apply this method to nine donors representing separate LIBRA-seq experiments and show that our approach provides improved predictions for <i>in vitro</i> antibody-antigen binding when compared to the standard scoring method, despite variance in data size and noise structure across samples. This development will improve the ability of LIBRA-seq to identify antigen-specific B cells and contribute to providing more reliable datasets for machine learning based approaches as the corpus of single-cell B cell sequencing data continues to grow.</p><p><strong>Availability and implementation: </strong>All data and code are available at https://github.com/IGlab-VUMC/mixture_model_denoising.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":"4 1","pages":"vbae170"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11631427/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbae170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: LIBRA-seq (linking B cell receptor to antigen specificity by sequencing) provides a powerful tool for interrogating the antigen-specific B cell compartment and identifying antibodies against antigen targets of interest. Identification of noise in single-cell B cell receptor sequencing data, such as LIBRA-seq, is critical for improving antigen binding predictions for downstream applications including antibody discovery and machine learning technologies.

Results: In this study, we present a method for denoising LIBRA-seq data by clustering antigen counts into signal and noise components with a negative binomial mixture model. This approach leverages single-cell sequencing reads from a large, multi-donor dataset described in a recent LIBRA-seq study to develop a data-driven means for identification of technical noise. We apply this method to nine donors representing separate LIBRA-seq experiments and show that our approach provides improved predictions for in vitro antibody-antigen binding when compared to the standard scoring method, despite variance in data size and noise structure across samples. This development will improve the ability of LIBRA-seq to identify antigen-specific B cells and contribute to providing more reliable datasets for machine learning based approaches as the corpus of single-cell B cell sequencing data continues to grow.

Availability and implementation: All data and code are available at https://github.com/IGlab-VUMC/mixture_model_denoising.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
期刊最新文献
Predicting CRISPR-Cas9 off-target effects in human primary cells using bidirectional LSTM with BERT embedding. Genal: a Python toolkit for genetic risk scoring and Mendelian randomization. QOMIC: quantum optimization for motif identification. SurfR: Riding the wave of RNA-seq data with a comprehensive bioconductor package to identify surface protein-coding genes. Exploring the role of the Rab network in epithelial-to-mesenchymal transition.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1