Diana Vania Lara-Ortiz, Rita Q Fuentes Aguilar, Isaac Chairez
{"title":"Design of a neural transformer for Spanish to Mexican Sign Language automatic translation/interpretation.","authors":"Diana Vania Lara-Ortiz, Rita Q Fuentes Aguilar, Isaac Chairez","doi":"10.1080/0954898X.2024.2435495","DOIUrl":null,"url":null,"abstract":"<p><p>This paper uses a multi-head neural transformer to present the text-to-text translation/interpretation of Sign Language (SL) in the context of glosses (written SL). A Spanish to Mexican Sign Language (MSL) gloss dataset was built based on simple and compound sentences and the corresponding interpretation in MSL gloss. The interpretation process was achieved by implementing state-of-the-art tools in the natural language processing (NLP) field called neural transformers. We tried different architectures, varying the number of encoder-decoder layers and hyperparameters. The best of our models achieved 0.68 BLEU in the training phase and 0.33 in the validation phase. MSL glosses are crucial as they rule the grammatical order in which MSL has to be executed. All these quantitative and qualitative results confirm the potential applicability of neural transformers to create effective automatic translators for the Spanish language to MSL, with similar effectiveness shown by other automatic translators for other more likely languages.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1-27"},"PeriodicalIF":1.1000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network-Computation in Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/0954898X.2024.2435495","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
This paper uses a multi-head neural transformer to present the text-to-text translation/interpretation of Sign Language (SL) in the context of glosses (written SL). A Spanish to Mexican Sign Language (MSL) gloss dataset was built based on simple and compound sentences and the corresponding interpretation in MSL gloss. The interpretation process was achieved by implementing state-of-the-art tools in the natural language processing (NLP) field called neural transformers. We tried different architectures, varying the number of encoder-decoder layers and hyperparameters. The best of our models achieved 0.68 BLEU in the training phase and 0.33 in the validation phase. MSL glosses are crucial as they rule the grammatical order in which MSL has to be executed. All these quantitative and qualitative results confirm the potential applicability of neural transformers to create effective automatic translators for the Spanish language to MSL, with similar effectiveness shown by other automatic translators for other more likely languages.
期刊介绍:
Network: Computation in Neural Systems welcomes submissions of research papers that integrate theoretical neuroscience with experimental data, emphasizing the utilization of cutting-edge technologies. We invite authors and researchers to contribute their work in the following areas:
Theoretical Neuroscience: This section encompasses neural network modeling approaches that elucidate brain function.
Neural Networks in Data Analysis and Pattern Recognition: We encourage submissions exploring the use of neural networks for data analysis and pattern recognition, including but not limited to image analysis and speech processing applications.
Neural Networks in Control Systems: This category encompasses the utilization of neural networks in control systems, including robotics, state estimation, fault detection, and diagnosis.
Analysis of Neurophysiological Data: We invite submissions focusing on the analysis of neurophysiology data obtained from experimental studies involving animals.
Analysis of Experimental Data on the Human Brain: This section includes papers analyzing experimental data from studies on the human brain, utilizing imaging techniques such as MRI, fMRI, EEG, and PET.
Neurobiological Foundations of Consciousness: We encourage submissions exploring the neural bases of consciousness in the brain and its simulation in machines.