Mohammad Amin Amani, Samuel Asumadu Sarkodie, Jiuh-Biing Sheu, Mohammad Mahdi Nasiri, Reza Tavakkoli-Moghaddam
{"title":"A data-driven hybrid scenario-based robust optimization method for relief logistics network design","authors":"Mohammad Amin Amani, Samuel Asumadu Sarkodie, Jiuh-Biing Sheu, Mohammad Mahdi Nasiri, Reza Tavakkoli-Moghaddam","doi":"10.1016/j.tre.2024.103931","DOIUrl":null,"url":null,"abstract":"The incorporation of artificial intelligence (AI) and robust optimization methods for the planning and design of relief logistics networks under relief demand–supply uncertainty appears promising for intelligent disaster management (IDM). This research proposes a data-driven hybrid scenario-based robust (SBR) method for a mixed integer second-order cone programming (MISOCP) model that integrates machine learning with a hybrid robust optimization approach to address the above issue. A machine learning technique is utilized to cluster the casualties based on location coordinates and injury severity score. Moreover, the hybrid SBR optimization method and robust optimization based on the uncertainty sets technique are utilized to cope with uncertain parameters such as the probability of facility disruption, the number of wounded individuals, transportation time, and relief demand. Additionally, the epsilon-constraint technique is applied to seek the solution for the bi-objective model. Focusing on a real case (the Kermanshah disaster), our analytical results have demonstrated not only the validity but also the relative merits of the proposed methodology against typical stochastic and robust optimization approaches. Besides, the proposed method shows all casualties can be efficiently transported to receive medical services at a fair cost, which is crucial for disaster management.","PeriodicalId":49418,"journal":{"name":"Transportation Research Part E-Logistics and Transportation Review","volume":"5 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Research Part E-Logistics and Transportation Review","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.tre.2024.103931","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
The incorporation of artificial intelligence (AI) and robust optimization methods for the planning and design of relief logistics networks under relief demand–supply uncertainty appears promising for intelligent disaster management (IDM). This research proposes a data-driven hybrid scenario-based robust (SBR) method for a mixed integer second-order cone programming (MISOCP) model that integrates machine learning with a hybrid robust optimization approach to address the above issue. A machine learning technique is utilized to cluster the casualties based on location coordinates and injury severity score. Moreover, the hybrid SBR optimization method and robust optimization based on the uncertainty sets technique are utilized to cope with uncertain parameters such as the probability of facility disruption, the number of wounded individuals, transportation time, and relief demand. Additionally, the epsilon-constraint technique is applied to seek the solution for the bi-objective model. Focusing on a real case (the Kermanshah disaster), our analytical results have demonstrated not only the validity but also the relative merits of the proposed methodology against typical stochastic and robust optimization approaches. Besides, the proposed method shows all casualties can be efficiently transported to receive medical services at a fair cost, which is crucial for disaster management.
期刊介绍:
Transportation Research Part E: Logistics and Transportation Review is a reputable journal that publishes high-quality articles covering a wide range of topics in the field of logistics and transportation research. The journal welcomes submissions on various subjects, including transport economics, transport infrastructure and investment appraisal, evaluation of public policies related to transportation, empirical and analytical studies of logistics management practices and performance, logistics and operations models, and logistics and supply chain management.
Part E aims to provide informative and well-researched articles that contribute to the understanding and advancement of the field. The content of the journal is complementary to other prestigious journals in transportation research, such as Transportation Research Part A: Policy and Practice, Part B: Methodological, Part C: Emerging Technologies, Part D: Transport and Environment, and Part F: Traffic Psychology and Behaviour. Together, these journals form a comprehensive and cohesive reference for current research in transportation science.