Songdi Fu, Xueqi Pan, Mingshun Lu, Jianying Dong, Zhiqiang Yan
{"title":"Human TMC1 and TMC2 are mechanically gated ion channels.","authors":"Songdi Fu, Xueqi Pan, Mingshun Lu, Jianying Dong, Zhiqiang Yan","doi":"10.1016/j.neuron.2024.11.009","DOIUrl":null,"url":null,"abstract":"<p><p>Mammalian transmembrane channel-like proteins 1 and 2 (TMC1 and TMC2) have emerged as very promising candidate mechanotransduction channels in hair cells. However, controversy persists because the heterogeneously expressed TMC1/2 in cultured cells lack evidence of mechanical gating, primarily due to their absence from the plasma membrane. By employing domain swapping with OSCA1.1 and subsequent point mutations, we successfully identified membrane-localized mouse TMC1/2 mutants, demonstrating that they are mechanically gated in heterologous cells. Further, whole-genome CRISPRi screening enabled wild-type human TMC1/2 localization in the plasma membrane, where they responded robustly to poking stimuli. In addition, wild-type human TMC1/2 showed stretch-activated currents and clear single-channel current activities. Deafness-related TMC1 mutations altered the reversal potential of TMC1, indicating that TMC1/2 are pore-forming mechanotransduction channels. In summary, our study provides evidence that human TMC1/2 are pore-forming, mechanically activated ion channels, supporting their roles as mechanotransduction channels in hair cells.</p>","PeriodicalId":19313,"journal":{"name":"Neuron","volume":" ","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuron","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neuron.2024.11.009","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Mammalian transmembrane channel-like proteins 1 and 2 (TMC1 and TMC2) have emerged as very promising candidate mechanotransduction channels in hair cells. However, controversy persists because the heterogeneously expressed TMC1/2 in cultured cells lack evidence of mechanical gating, primarily due to their absence from the plasma membrane. By employing domain swapping with OSCA1.1 and subsequent point mutations, we successfully identified membrane-localized mouse TMC1/2 mutants, demonstrating that they are mechanically gated in heterologous cells. Further, whole-genome CRISPRi screening enabled wild-type human TMC1/2 localization in the plasma membrane, where they responded robustly to poking stimuli. In addition, wild-type human TMC1/2 showed stretch-activated currents and clear single-channel current activities. Deafness-related TMC1 mutations altered the reversal potential of TMC1, indicating that TMC1/2 are pore-forming mechanotransduction channels. In summary, our study provides evidence that human TMC1/2 are pore-forming, mechanically activated ion channels, supporting their roles as mechanotransduction channels in hair cells.
期刊介绍:
Established as a highly influential journal in neuroscience, Neuron is widely relied upon in the field. The editors adopt interdisciplinary strategies, integrating biophysical, cellular, developmental, and molecular approaches alongside a systems approach to sensory, motor, and higher-order cognitive functions. Serving as a premier intellectual forum, Neuron holds a prominent position in the entire neuroscience community.