{"title":"Securing Unmanned Aerial Vehicles Networks Using Pairing Free Aggregate Signcryption Scheme","authors":"Eman Abouelkheir","doi":"10.1109/OJCOMS.2024.3504353","DOIUrl":null,"url":null,"abstract":"Unmanned aerial vehicles (UAVs) have gained significant attention in robotics research during the past decade, despite their presence dating back to 1915. Unmanned Aerial Vehicles (UAVs) are capable of efficiently and successfully carrying out a range of tasks. As a result, the use of many UAVs to fulfill a specific mission has grown into a popular area of research. Researchers have conducted investigations on the use of numerous UAVs in various fields such as remote sensing, disaster relief, force protection, military warfare, and surveillance. Efficiency and robustness are crucial factors for carrying out key operations. Multiple groups of UAVs, through appropriate interaction and concerted procedures, can achieve these objectives. The unpredictable features of UAVs and their reliance on unprotected and widely available wireless networks create challenges in establishing secure communication between a private edge cloud and a UAV. Consequently, secret UAV networks that utilize edge computing necessitate supplementary precautions to safeguard their networks. This research paper talks about a simple, lightweight, certificate-free, heterogeneous online/offline aggregate signing scheme called CL-PFASC. It comes from the discrete logarithm problem. The concert scheme enables UAVs to communicate with a GS without the need for a bilinear coupling operation. We classify the UAVs as identity-based cryptography (IBC) and the ground station GS as public-key infrastructure (PKI). We verify the security features of the suggested scheme using a formal security evaluation method, the random oracle model, under confidentiality and unforgeability. We also evaluate its communication and computation costs and compare them to those of similar existing schemes. The performance and security study indicate that the suggested approach improves both efficiency and security.","PeriodicalId":33803,"journal":{"name":"IEEE Open Journal of the Communications Society","volume":"5 ","pages":"7552-7566"},"PeriodicalIF":6.3000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10759680","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Communications Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10759680/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Unmanned aerial vehicles (UAVs) have gained significant attention in robotics research during the past decade, despite their presence dating back to 1915. Unmanned Aerial Vehicles (UAVs) are capable of efficiently and successfully carrying out a range of tasks. As a result, the use of many UAVs to fulfill a specific mission has grown into a popular area of research. Researchers have conducted investigations on the use of numerous UAVs in various fields such as remote sensing, disaster relief, force protection, military warfare, and surveillance. Efficiency and robustness are crucial factors for carrying out key operations. Multiple groups of UAVs, through appropriate interaction and concerted procedures, can achieve these objectives. The unpredictable features of UAVs and their reliance on unprotected and widely available wireless networks create challenges in establishing secure communication between a private edge cloud and a UAV. Consequently, secret UAV networks that utilize edge computing necessitate supplementary precautions to safeguard their networks. This research paper talks about a simple, lightweight, certificate-free, heterogeneous online/offline aggregate signing scheme called CL-PFASC. It comes from the discrete logarithm problem. The concert scheme enables UAVs to communicate with a GS without the need for a bilinear coupling operation. We classify the UAVs as identity-based cryptography (IBC) and the ground station GS as public-key infrastructure (PKI). We verify the security features of the suggested scheme using a formal security evaluation method, the random oracle model, under confidentiality and unforgeability. We also evaluate its communication and computation costs and compare them to those of similar existing schemes. The performance and security study indicate that the suggested approach improves both efficiency and security.
期刊介绍:
The IEEE Open Journal of the Communications Society (OJ-COMS) is an open access, all-electronic journal that publishes original high-quality manuscripts on advances in the state of the art of telecommunications systems and networks. The papers in IEEE OJ-COMS are included in Scopus. Submissions reporting new theoretical findings (including novel methods, concepts, and studies) and practical contributions (including experiments and development of prototypes) are welcome. Additionally, survey and tutorial articles are considered. The IEEE OJCOMS received its debut impact factor of 7.9 according to the Journal Citation Reports (JCR) 2023.
The IEEE Open Journal of the Communications Society covers science, technology, applications and standards for information organization, collection and transfer using electronic, optical and wireless channels and networks. Some specific areas covered include:
Systems and network architecture, control and management
Protocols, software, and middleware
Quality of service, reliability, and security
Modulation, detection, coding, and signaling
Switching and routing
Mobile and portable communications
Terminals and other end-user devices
Networks for content distribution and distributed computing
Communications-based distributed resources control.