{"title":"Enhanced Lightweight Quantum Key Distribution Protocol for Improved Efficiency and Security","authors":"Ashutosh Bhatia;Sainath Bitragunta;Kamlesh Tiwari","doi":"10.1109/OJCOMS.2025.3528718","DOIUrl":null,"url":null,"abstract":"Quantum Key Distribution (QKD) provides secure communication by leveraging quantum mechanics, with the BB84 protocol being one of its most widely adopted implementations. However, the classical post-processing steps in BB84, such as sifting, error correction, and key verification, often result in significant communication overhead, limiting its efficiency and scalability. In this work, we propose three key optimizations for BB84: (1) PRNG-based predetermined key bit positioning, which eliminates redundant bit exchanges during sifting, (2) hash-based subsequence comparison, enabling lightweight and efficient key verification, and (3) adaptive basis reconciliation, which minimizes the communication costs associated with basis matching. The proposed optimizations achieve a 50% reduction in communication overhead for large key sizes compared to traditional QKD protocols, as demonstrated through rigorous performance analysis. While the focus of this work is on the BB84 protocol, these optimizations are also directly applicable to a broader class of Discrete-Variable QKD (DV-QKD) protocols, such as six-state, B92, and E91, which share a fundamentally similar post-processing structure. This generality highlights the modularity and adaptability of the proposed methods across diverse QKD implementations. The proposed optimizations enhance post-processing efficiency and scalability, enabling practical deployment in bandwidth-limited environments like IoT networks, secure financial systems, and defense communications, thereby supporting broader adoption of quantum communication systems.","PeriodicalId":33803,"journal":{"name":"IEEE Open Journal of the Communications Society","volume":"6 ","pages":"926-943"},"PeriodicalIF":6.3000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10839014","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Communications Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10839014/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Quantum Key Distribution (QKD) provides secure communication by leveraging quantum mechanics, with the BB84 protocol being one of its most widely adopted implementations. However, the classical post-processing steps in BB84, such as sifting, error correction, and key verification, often result in significant communication overhead, limiting its efficiency and scalability. In this work, we propose three key optimizations for BB84: (1) PRNG-based predetermined key bit positioning, which eliminates redundant bit exchanges during sifting, (2) hash-based subsequence comparison, enabling lightweight and efficient key verification, and (3) adaptive basis reconciliation, which minimizes the communication costs associated with basis matching. The proposed optimizations achieve a 50% reduction in communication overhead for large key sizes compared to traditional QKD protocols, as demonstrated through rigorous performance analysis. While the focus of this work is on the BB84 protocol, these optimizations are also directly applicable to a broader class of Discrete-Variable QKD (DV-QKD) protocols, such as six-state, B92, and E91, which share a fundamentally similar post-processing structure. This generality highlights the modularity and adaptability of the proposed methods across diverse QKD implementations. The proposed optimizations enhance post-processing efficiency and scalability, enabling practical deployment in bandwidth-limited environments like IoT networks, secure financial systems, and defense communications, thereby supporting broader adoption of quantum communication systems.
期刊介绍:
The IEEE Open Journal of the Communications Society (OJ-COMS) is an open access, all-electronic journal that publishes original high-quality manuscripts on advances in the state of the art of telecommunications systems and networks. The papers in IEEE OJ-COMS are included in Scopus. Submissions reporting new theoretical findings (including novel methods, concepts, and studies) and practical contributions (including experiments and development of prototypes) are welcome. Additionally, survey and tutorial articles are considered. The IEEE OJCOMS received its debut impact factor of 7.9 according to the Journal Citation Reports (JCR) 2023.
The IEEE Open Journal of the Communications Society covers science, technology, applications and standards for information organization, collection and transfer using electronic, optical and wireless channels and networks. Some specific areas covered include:
Systems and network architecture, control and management
Protocols, software, and middleware
Quality of service, reliability, and security
Modulation, detection, coding, and signaling
Switching and routing
Mobile and portable communications
Terminals and other end-user devices
Networks for content distribution and distributed computing
Communications-based distributed resources control.