Enhanced Lightweight Quantum Key Distribution Protocol for Improved Efficiency and Security

IF 6.3 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Open Journal of the Communications Society Pub Date : 2025-01-13 DOI:10.1109/OJCOMS.2025.3528718
Ashutosh Bhatia;Sainath Bitragunta;Kamlesh Tiwari
{"title":"Enhanced Lightweight Quantum Key Distribution Protocol for Improved Efficiency and Security","authors":"Ashutosh Bhatia;Sainath Bitragunta;Kamlesh Tiwari","doi":"10.1109/OJCOMS.2025.3528718","DOIUrl":null,"url":null,"abstract":"Quantum Key Distribution (QKD) provides secure communication by leveraging quantum mechanics, with the BB84 protocol being one of its most widely adopted implementations. However, the classical post-processing steps in BB84, such as sifting, error correction, and key verification, often result in significant communication overhead, limiting its efficiency and scalability. In this work, we propose three key optimizations for BB84: (1) PRNG-based predetermined key bit positioning, which eliminates redundant bit exchanges during sifting, (2) hash-based subsequence comparison, enabling lightweight and efficient key verification, and (3) adaptive basis reconciliation, which minimizes the communication costs associated with basis matching. The proposed optimizations achieve a 50% reduction in communication overhead for large key sizes compared to traditional QKD protocols, as demonstrated through rigorous performance analysis. While the focus of this work is on the BB84 protocol, these optimizations are also directly applicable to a broader class of Discrete-Variable QKD (DV-QKD) protocols, such as six-state, B92, and E91, which share a fundamentally similar post-processing structure. This generality highlights the modularity and adaptability of the proposed methods across diverse QKD implementations. The proposed optimizations enhance post-processing efficiency and scalability, enabling practical deployment in bandwidth-limited environments like IoT networks, secure financial systems, and defense communications, thereby supporting broader adoption of quantum communication systems.","PeriodicalId":33803,"journal":{"name":"IEEE Open Journal of the Communications Society","volume":"6 ","pages":"926-943"},"PeriodicalIF":6.3000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10839014","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Communications Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10839014/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Quantum Key Distribution (QKD) provides secure communication by leveraging quantum mechanics, with the BB84 protocol being one of its most widely adopted implementations. However, the classical post-processing steps in BB84, such as sifting, error correction, and key verification, often result in significant communication overhead, limiting its efficiency and scalability. In this work, we propose three key optimizations for BB84: (1) PRNG-based predetermined key bit positioning, which eliminates redundant bit exchanges during sifting, (2) hash-based subsequence comparison, enabling lightweight and efficient key verification, and (3) adaptive basis reconciliation, which minimizes the communication costs associated with basis matching. The proposed optimizations achieve a 50% reduction in communication overhead for large key sizes compared to traditional QKD protocols, as demonstrated through rigorous performance analysis. While the focus of this work is on the BB84 protocol, these optimizations are also directly applicable to a broader class of Discrete-Variable QKD (DV-QKD) protocols, such as six-state, B92, and E91, which share a fundamentally similar post-processing structure. This generality highlights the modularity and adaptability of the proposed methods across diverse QKD implementations. The proposed optimizations enhance post-processing efficiency and scalability, enabling practical deployment in bandwidth-limited environments like IoT networks, secure financial systems, and defense communications, thereby supporting broader adoption of quantum communication systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
13.70
自引率
3.80%
发文量
94
审稿时长
10 weeks
期刊介绍: The IEEE Open Journal of the Communications Society (OJ-COMS) is an open access, all-electronic journal that publishes original high-quality manuscripts on advances in the state of the art of telecommunications systems and networks. The papers in IEEE OJ-COMS are included in Scopus. Submissions reporting new theoretical findings (including novel methods, concepts, and studies) and practical contributions (including experiments and development of prototypes) are welcome. Additionally, survey and tutorial articles are considered. The IEEE OJCOMS received its debut impact factor of 7.9 according to the Journal Citation Reports (JCR) 2023. The IEEE Open Journal of the Communications Society covers science, technology, applications and standards for information organization, collection and transfer using electronic, optical and wireless channels and networks. Some specific areas covered include: Systems and network architecture, control and management Protocols, software, and middleware Quality of service, reliability, and security Modulation, detection, coding, and signaling Switching and routing Mobile and portable communications Terminals and other end-user devices Networks for content distribution and distributed computing Communications-based distributed resources control.
期刊最新文献
Link Scheduling in Satellite Networks via Machine Learning Over Riemannian Manifolds Harnessing Meta-Reinforcement Learning for Enhanced Tracking in Geofencing Systems Deep Reinforcement Learning-Based Anti-Jamming Approach for Fast Frequency Hopping Systems 5G Networks Security Mitigation Model: An ANN-ISM Hybrid Approach Enhanced Lightweight Quantum Key Distribution Protocol for Improved Efficiency and Security
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1