{"title":"Harnessing Meta-Reinforcement Learning for Enhanced Tracking in Geofencing Systems","authors":"Alireza Famili;Shihua Sun;Tolga Atalay;Angelos Stavrou","doi":"10.1109/OJCOMS.2025.3531318","DOIUrl":null,"url":null,"abstract":"Geofencing technologies have become pivotal in creating virtual boundaries for both real and virtual environments, offering a secure means to control and monitor designated areas. They are now considered essential tools for defining and controlling boundaries across various applications, from aviation safety in drone management to access control within mixed reality platforms like the metaverse. Effective geofencing relies heavily on precise tracking capabilities, a critical component for maintaining the integrity and functionality of these systems. Leveraging the advantages of 5G technology, including its large bandwidth and extensive accessibility, presents a promising solution to enhance geofencing performance. In this paper, we introduce MetaFence: Meta-Reinforcement Learning for Geofencing Enhancement, a novel approach for precise geofencing utilizing indoor 5G small cells, termed “5G Points”, which are optimally deployed using a meta-reinforcement learning (meta-RL) framework. Our proposed meta-RL method addresses the NP-hard problem of determining an optimal placement of 5G Points to minimize spatial geometry-induced errors. Moreover, the meta-training approach enables the learned policy to quickly adapt to diverse new environments. We devised a comprehensive test campaign to evaluate the performance of MetaFence. Our results demonstrate that this strategic placement significantly improves tracking accuracy compared to traditional methods. Furthermore, we show that the meta-training strategy enables the learned policy to generalize effectively and perform efficiently when faced with new environments.","PeriodicalId":33803,"journal":{"name":"IEEE Open Journal of the Communications Society","volume":"6 ","pages":"944-960"},"PeriodicalIF":6.3000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10845873","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Communications Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10845873/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Geofencing technologies have become pivotal in creating virtual boundaries for both real and virtual environments, offering a secure means to control and monitor designated areas. They are now considered essential tools for defining and controlling boundaries across various applications, from aviation safety in drone management to access control within mixed reality platforms like the metaverse. Effective geofencing relies heavily on precise tracking capabilities, a critical component for maintaining the integrity and functionality of these systems. Leveraging the advantages of 5G technology, including its large bandwidth and extensive accessibility, presents a promising solution to enhance geofencing performance. In this paper, we introduce MetaFence: Meta-Reinforcement Learning for Geofencing Enhancement, a novel approach for precise geofencing utilizing indoor 5G small cells, termed “5G Points”, which are optimally deployed using a meta-reinforcement learning (meta-RL) framework. Our proposed meta-RL method addresses the NP-hard problem of determining an optimal placement of 5G Points to minimize spatial geometry-induced errors. Moreover, the meta-training approach enables the learned policy to quickly adapt to diverse new environments. We devised a comprehensive test campaign to evaluate the performance of MetaFence. Our results demonstrate that this strategic placement significantly improves tracking accuracy compared to traditional methods. Furthermore, we show that the meta-training strategy enables the learned policy to generalize effectively and perform efficiently when faced with new environments.
期刊介绍:
The IEEE Open Journal of the Communications Society (OJ-COMS) is an open access, all-electronic journal that publishes original high-quality manuscripts on advances in the state of the art of telecommunications systems and networks. The papers in IEEE OJ-COMS are included in Scopus. Submissions reporting new theoretical findings (including novel methods, concepts, and studies) and practical contributions (including experiments and development of prototypes) are welcome. Additionally, survey and tutorial articles are considered. The IEEE OJCOMS received its debut impact factor of 7.9 according to the Journal Citation Reports (JCR) 2023.
The IEEE Open Journal of the Communications Society covers science, technology, applications and standards for information organization, collection and transfer using electronic, optical and wireless channels and networks. Some specific areas covered include:
Systems and network architecture, control and management
Protocols, software, and middleware
Quality of service, reliability, and security
Modulation, detection, coding, and signaling
Switching and routing
Mobile and portable communications
Terminals and other end-user devices
Networks for content distribution and distributed computing
Communications-based distributed resources control.