New Layered Chalcogenide‐Type Metal Sulfide Materials with Improved Properties for Solar Fuel Production Applications

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Small Pub Date : 2024-12-17 DOI:10.1002/smll.202408727
Beatriz Silva‐Gaspar, Francisco Gonell, Raquel Martinez‐Franco, Antoine Fécant, Urbano Díaz, Avelino Corma
{"title":"New Layered Chalcogenide‐Type Metal Sulfide Materials with Improved Properties for Solar Fuel Production Applications","authors":"Beatriz Silva‐Gaspar, Francisco Gonell, Raquel Martinez‐Franco, Antoine Fécant, Urbano Díaz, Avelino Corma","doi":"10.1002/smll.202408727","DOIUrl":null,"url":null,"abstract":"Novel lamellar chalcogenide materials, named as ITQ‐75, are synthesized, focusing on the advancement and alteration of metal (tin and zinc) sulfide‐based microstructured materials. These are achieved via hydro(solvo)thermal processes in the presence of N‐heterocyclic aromatic structural directing agents. The comprehensive characterization of these materials included fine‐tuning their electronic structure through a metal doping strategy and enhancing their accessibility by modifying the synthesis gel composition. This modification involved altering the gel's viscosity or incorporating mesoporogen agents such as saccharide moieties. The most promisingly modified ITQ‐75‐type materials demonstrated optical band gap values of ≈2.0 eV, falling within the optimal range for efficient solar fuel production processes. Furthermore, the photocatalytic performance of these optimized lamellar chalcogenides is assessed using the water‐splitting reaction for hydrogen generation in the gas phase and without any sacrificial reagent. These new noble metal‐free materials are revealed to be among the most efficient to date (up to 7 µmol<jats:sub>H2</jats:sub> h cm<jats:sup>−</jats:sup><jats:sup>2</jats:sup>). The results confirm the potential of these materials as promising photocatalysts for solar fuel production applications.","PeriodicalId":228,"journal":{"name":"Small","volume":"55 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202408727","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Novel lamellar chalcogenide materials, named as ITQ‐75, are synthesized, focusing on the advancement and alteration of metal (tin and zinc) sulfide‐based microstructured materials. These are achieved via hydro(solvo)thermal processes in the presence of N‐heterocyclic aromatic structural directing agents. The comprehensive characterization of these materials included fine‐tuning their electronic structure through a metal doping strategy and enhancing their accessibility by modifying the synthesis gel composition. This modification involved altering the gel's viscosity or incorporating mesoporogen agents such as saccharide moieties. The most promisingly modified ITQ‐75‐type materials demonstrated optical band gap values of ≈2.0 eV, falling within the optimal range for efficient solar fuel production processes. Furthermore, the photocatalytic performance of these optimized lamellar chalcogenides is assessed using the water‐splitting reaction for hydrogen generation in the gas phase and without any sacrificial reagent. These new noble metal‐free materials are revealed to be among the most efficient to date (up to 7 µmolH2 h cm2). The results confirm the potential of these materials as promising photocatalysts for solar fuel production applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
性能更佳的新型层状卤化钙钛矿型金属硫化物材料在太阳能燃料生产中的应用
本研究合成了名为 ITQ-75 的新型片状卤化铝材料,重点研究金属(锡和锌)硫化物微结构材料的进步和改变。这些材料是在 N-杂环芳香族结构引导剂的存在下,通过水(溶)热工艺合成的。这些材料的综合表征包括通过金属掺杂策略对其电子结构进行微调,以及通过改变合成凝胶的成分来提高其可及性。这种改性包括改变凝胶的粘度或加入中间疏松剂(如糖分子)。最有前景的改性 ITQ-75 型材料的光带隙值≈2.0 eV,处于高效太阳能燃料生产工艺的最佳范围内。此外,在不使用任何牺牲试剂的情况下,利用分水反应在气相中生成氢气,对这些优化的片状铬化镓材料的光催化性能进行了评估。结果表明,这些新型无贵金属材料是迄今为止最高效的材料之一(高达 7 µmolH2 h cm-2)。研究结果证实,这些材料有望成为太阳能燃料生产应用的光催化剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
期刊最新文献
Construction of CdIn2S4/MXene‐TiO2 Z‐Scheme Heterojunction for High‐Gain Organic Photoelectrochemical Transistor to Achieve Maximized Transconductance at Zero Bias Remodel Heterogeneous Electrical Microenvironment at Nano‐Scale Interface Optimizes Osteogenesis by Coupling of Immunomodulation and Angiogenesis Adaptive Phase-Locked E-Skin for Sports Physiology and Medicine Harmonizing Wide Voltage Window and High Energy Density toward Asymmetric All-Solid-State Supercapacitor Enhanced Performance of Sn-Based Perovskite Photodetectors Through Double-Sided Passivation for Near-Infrared Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1