Deciphering Oxidation-Dominated Abnormal Rheology to Design Performance-Stable Liquid-Metal-Based Nanofluids for Transmission Applications.

IF 3.9 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Langmuir Pub Date : 2024-12-31 Epub Date: 2024-12-16 DOI:10.1021/acs.langmuir.4c04055
Jiajun Jiang, Shuaihang Pan, Robert G Parker, Xian Meng, Tianlu Wang, Daotong Chen, Chunxia Lin, Xiaoming Cai, Jiajun Zhu, Changli Cai, Zhangyong Wu
{"title":"Deciphering Oxidation-Dominated Abnormal Rheology to Design Performance-Stable Liquid-Metal-Based Nanofluids for Transmission Applications.","authors":"Jiajun Jiang, Shuaihang Pan, Robert G Parker, Xian Meng, Tianlu Wang, Daotong Chen, Chunxia Lin, Xiaoming Cai, Jiajun Zhu, Changli Cai, Zhangyong Wu","doi":"10.1021/acs.langmuir.4c04055","DOIUrl":null,"url":null,"abstract":"<p><p>With global decarbonization urgency for sustainability, enhancing the service stability of liquid metals (LMs) and reducing their oxidation-induced failures are crucial. The oxidation of LMs can adversely affect the fluidity required for hydraulic transmission, thermal management, and other transport scenarios. Given the importance, we have fabricated an LM-based SiC/graphene-Mo nanofluid (LMNF) and compared the rheological behavior to pure LM under an oxidative atmospheric environment. Using an omni-spectrum rotary rheometer and a water bath ultrasonic technique, we quantified a more stable rheological performance in our LMNFs and elucidated how it linked to LMNFs' phase interactions and oxidation. Their temperature-viscosity characteristics are less susceptible to dealloying-accompanied severe oxidation because the nanophase-enabled strong interfacial bonding by SiC, graphene, and Mo gives LMNFs a more viscoelastic solid nature. With these observations, a performance-predicting model, validated through real hydraulic transmission demonstrations, is developed to decipher the relationship among oxidation-influenced rheological performance like viscosity, temperature, and nanophase and guide LMNF design. This model provides a robust framework to fabricate LMNFs for long-term applications with a stable performance.</p>","PeriodicalId":50,"journal":{"name":"Langmuir","volume":" ","pages":"27592-27605"},"PeriodicalIF":3.9000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.4c04055","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/16 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

With global decarbonization urgency for sustainability, enhancing the service stability of liquid metals (LMs) and reducing their oxidation-induced failures are crucial. The oxidation of LMs can adversely affect the fluidity required for hydraulic transmission, thermal management, and other transport scenarios. Given the importance, we have fabricated an LM-based SiC/graphene-Mo nanofluid (LMNF) and compared the rheological behavior to pure LM under an oxidative atmospheric environment. Using an omni-spectrum rotary rheometer and a water bath ultrasonic technique, we quantified a more stable rheological performance in our LMNFs and elucidated how it linked to LMNFs' phase interactions and oxidation. Their temperature-viscosity characteristics are less susceptible to dealloying-accompanied severe oxidation because the nanophase-enabled strong interfacial bonding by SiC, graphene, and Mo gives LMNFs a more viscoelastic solid nature. With these observations, a performance-predicting model, validated through real hydraulic transmission demonstrations, is developed to decipher the relationship among oxidation-influenced rheological performance like viscosity, temperature, and nanophase and guide LMNF design. This model provides a robust framework to fabricate LMNFs for long-term applications with a stable performance.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
破译氧化主导的异常流变以设计性能稳定的液体-金属基纳米流体用于传输应用。
随着全球脱碳对可持续性的迫切要求,提高液态金属(lm)的使用稳定性和减少其氧化引起的故障至关重要。LMs的氧化会对液压传动、热管理和其他运输方案所需的流动性产生不利影响。考虑到这一重要性,我们制作了一种基于LM的SiC/石墨烯- mo纳米流体(LMNF),并在氧化大气环境下与纯LM进行了流变行为比较。利用全光谱旋转流变仪和水浴超声技术,我们量化了lmfs中更稳定的流变性能,并阐明了它与lmfs相相互作用和氧化的关系。它们的温度-粘度特性不易受到脱合金伴随的严重氧化的影响,因为纳米相使SiC,石墨烯和Mo的强界面结合使lmfs具有更粘弹性的固体性质。根据这些观察结果,通过实际液压传动演示验证了性能预测模型,该模型可以解释氧化影响流变性能(如粘度、温度和纳米相)之间的关系,并指导LMNF的设计。该模型为制造具有稳定性能的长期应用的lmfs提供了一个健壮的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Langmuir
Langmuir 化学-材料科学:综合
CiteScore
6.50
自引率
10.30%
发文量
1464
审稿时长
2.1 months
期刊介绍: Langmuir is an interdisciplinary journal publishing articles in the following subject categories: Colloids: surfactants and self-assembly, dispersions, emulsions, foams Interfaces: adsorption, reactions, films, forces Biological Interfaces: biocolloids, biomolecular and biomimetic materials Materials: nano- and mesostructured materials, polymers, gels, liquid crystals Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do? Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*. This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).
期刊最新文献
DFT Reveals Adenine Adsorption on Graphene Oxide and AuNPs: A Potential Reason for Failure in Aptamer Selection. Adsorption and Sensing of Cyanide Gases over Transition Metal (Mn and Fe)-Decorated CrS2 Monolayers: Insights from DFT and AIMD Simulations. Siloxane-Terminated Self-Assembled Monolayers for Mimicking Nanoscale Hydrophobic Polydimethylsiloxane Surfaces Hofmeister Effect-Driven Mussel-Inspired Hydrogel with Tunable Mechanics for Flexible Sensors Carbonized Ce/Cu Metal–Organic Framework-Derived Porous Nanorods for High-Performance Adsorption of Organic Pollutants
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1