{"title":"Deciphering Oxidation-Dominated Abnormal Rheology to Design Performance-Stable Liquid-Metal-Based Nanofluids for Transmission Applications.","authors":"Jiajun Jiang, Shuaihang Pan, Robert G Parker, Xian Meng, Tianlu Wang, Daotong Chen, Chunxia Lin, Xiaoming Cai, Jiajun Zhu, Changli Cai, Zhangyong Wu","doi":"10.1021/acs.langmuir.4c04055","DOIUrl":null,"url":null,"abstract":"<p><p>With global decarbonization urgency for sustainability, enhancing the service stability of liquid metals (LMs) and reducing their oxidation-induced failures are crucial. The oxidation of LMs can adversely affect the fluidity required for hydraulic transmission, thermal management, and other transport scenarios. Given the importance, we have fabricated an LM-based SiC/graphene-Mo nanofluid (LMNF) and compared the rheological behavior to pure LM under an oxidative atmospheric environment. Using an omni-spectrum rotary rheometer and a water bath ultrasonic technique, we quantified a more stable rheological performance in our LMNFs and elucidated how it linked to LMNFs' phase interactions and oxidation. Their temperature-viscosity characteristics are less susceptible to dealloying-accompanied severe oxidation because the nanophase-enabled strong interfacial bonding by SiC, graphene, and Mo gives LMNFs a more viscoelastic solid nature. With these observations, a performance-predicting model, validated through real hydraulic transmission demonstrations, is developed to decipher the relationship among oxidation-influenced rheological performance like viscosity, temperature, and nanophase and guide LMNF design. This model provides a robust framework to fabricate LMNFs for long-term applications with a stable performance.</p>","PeriodicalId":50,"journal":{"name":"Langmuir","volume":" ","pages":"27592-27605"},"PeriodicalIF":3.7000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.4c04055","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/16 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
With global decarbonization urgency for sustainability, enhancing the service stability of liquid metals (LMs) and reducing their oxidation-induced failures are crucial. The oxidation of LMs can adversely affect the fluidity required for hydraulic transmission, thermal management, and other transport scenarios. Given the importance, we have fabricated an LM-based SiC/graphene-Mo nanofluid (LMNF) and compared the rheological behavior to pure LM under an oxidative atmospheric environment. Using an omni-spectrum rotary rheometer and a water bath ultrasonic technique, we quantified a more stable rheological performance in our LMNFs and elucidated how it linked to LMNFs' phase interactions and oxidation. Their temperature-viscosity characteristics are less susceptible to dealloying-accompanied severe oxidation because the nanophase-enabled strong interfacial bonding by SiC, graphene, and Mo gives LMNFs a more viscoelastic solid nature. With these observations, a performance-predicting model, validated through real hydraulic transmission demonstrations, is developed to decipher the relationship among oxidation-influenced rheological performance like viscosity, temperature, and nanophase and guide LMNF design. This model provides a robust framework to fabricate LMNFs for long-term applications with a stable performance.
期刊介绍:
Langmuir is an interdisciplinary journal publishing articles in the following subject categories:
Colloids: surfactants and self-assembly, dispersions, emulsions, foams
Interfaces: adsorption, reactions, films, forces
Biological Interfaces: biocolloids, biomolecular and biomimetic materials
Materials: nano- and mesostructured materials, polymers, gels, liquid crystals
Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry
Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals
However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do?
Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*.
This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).