Gene-Implanting by a Porphyrin Derivative to Establish Quasi-antennas into the Carbon Microspheres toward Superior Microwave Absorbing/Shielding Performance
{"title":"Gene-Implanting by a Porphyrin Derivative to Establish Quasi-antennas into the Carbon Microspheres toward Superior Microwave Absorbing/Shielding Performance","authors":"Haniyeh Dogari, Mohammad Hossein Hedayatzadeh, Fatemeh Eshrati, Mahdi Akhgari, Reza Peymanfar, Hossein Ghafuri","doi":"10.1021/acs.langmuir.4c03493","DOIUrl":null,"url":null,"abstract":"Carbon microspheres (CMSs) are recognized as highly effective microwave absorbers due to their exceptional wave absorption properties. In this study, 5,10,15,20-tetrakis(4-aminophenyl)porphyrin, a metamaterial, was chemically bonded to CMSs─considered a conjugated carbon structure─using a 1,3-dibromopropane linker to explore the synergistic properties and microwave absorption capabilities of the synthesized composite. The synthesized structures were characterized by using X-ray diffraction, FE-SEM, Fourier transform infrared, diffuse reflectance spectroscopy, and VNA analyses. Remarkably, the gene-modified microwave absorber demonstrated a maximum reflection loss of −105.58 dB at 22.93 GHz, with an ultrathin thickness of only 0.50 mm. When the architected samples were blended with poly(methyl methacrylate), a practical polymer, they exhibited a broad efficient bandwidth across the entire K-band, coupled with moderate shielding effectiveness, making them ideal for mitigating electromagnetic pollution in everyday life. This study offers inspiration for researchers to fabricate and design new enhanced microwave absorbers for a range of applications.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"48 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.4c03493","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Carbon microspheres (CMSs) are recognized as highly effective microwave absorbers due to their exceptional wave absorption properties. In this study, 5,10,15,20-tetrakis(4-aminophenyl)porphyrin, a metamaterial, was chemically bonded to CMSs─considered a conjugated carbon structure─using a 1,3-dibromopropane linker to explore the synergistic properties and microwave absorption capabilities of the synthesized composite. The synthesized structures were characterized by using X-ray diffraction, FE-SEM, Fourier transform infrared, diffuse reflectance spectroscopy, and VNA analyses. Remarkably, the gene-modified microwave absorber demonstrated a maximum reflection loss of −105.58 dB at 22.93 GHz, with an ultrathin thickness of only 0.50 mm. When the architected samples were blended with poly(methyl methacrylate), a practical polymer, they exhibited a broad efficient bandwidth across the entire K-band, coupled with moderate shielding effectiveness, making them ideal for mitigating electromagnetic pollution in everyday life. This study offers inspiration for researchers to fabricate and design new enhanced microwave absorbers for a range of applications.
期刊介绍:
Langmuir is an interdisciplinary journal publishing articles in the following subject categories:
Colloids: surfactants and self-assembly, dispersions, emulsions, foams
Interfaces: adsorption, reactions, films, forces
Biological Interfaces: biocolloids, biomolecular and biomimetic materials
Materials: nano- and mesostructured materials, polymers, gels, liquid crystals
Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry
Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals
However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do?
Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*.
This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).