{"title":"3D Printing Organogels with Bioderived Cyrene for High-Resolution Customized Hydrogel Structures","authors":"Aline B. Ramirez, Lukas A. Bauman, Boxin Zhao","doi":"10.1021/acs.langmuir.4c03887","DOIUrl":null,"url":null,"abstract":"3D printing techniques are increasingly being explored to produce hydrogels, versatile materials with a wide range of applications. While photopolymerization-based 3D printing can produce customized hydrogel shapes and intricate structures, its reliance on rigid printing conditions limits material properties compared to those of extrusion printing. To address this limitation, this study employed an alternative approach by printing an organogel precursor using vat polymerization with organic solvents instead of water, followed by solvent exchange after printing to create the final hydrogel material. Using mask stereolithography (mSLA), we evaluated the effects of solvent choice on a novel and recently developed 3D-printed supramolecular hydrogel, cross-linked with quaternized chitosan/acrylate salt. In this study, we compared the conventional solvent dimethyl sulfoxide (DMSO) with the bioderived solvent Cyrene. Our findings reveal that hydrogels produced with Cyrene-based 3D printing exhibit weaker strength but high swelling capacity and elasticity, resilience to cyclic loading, and the ability to produce detailed and accurate 3D-printed objects. These results provide insights into the solvent-dependent mechanical and physical characteristics of 3D-printed hydrogels and underscore the potential of Cyrene as a sustainable alternative for polymeric synthesis.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"20 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.4c03887","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
3D printing techniques are increasingly being explored to produce hydrogels, versatile materials with a wide range of applications. While photopolymerization-based 3D printing can produce customized hydrogel shapes and intricate structures, its reliance on rigid printing conditions limits material properties compared to those of extrusion printing. To address this limitation, this study employed an alternative approach by printing an organogel precursor using vat polymerization with organic solvents instead of water, followed by solvent exchange after printing to create the final hydrogel material. Using mask stereolithography (mSLA), we evaluated the effects of solvent choice on a novel and recently developed 3D-printed supramolecular hydrogel, cross-linked with quaternized chitosan/acrylate salt. In this study, we compared the conventional solvent dimethyl sulfoxide (DMSO) with the bioderived solvent Cyrene. Our findings reveal that hydrogels produced with Cyrene-based 3D printing exhibit weaker strength but high swelling capacity and elasticity, resilience to cyclic loading, and the ability to produce detailed and accurate 3D-printed objects. These results provide insights into the solvent-dependent mechanical and physical characteristics of 3D-printed hydrogels and underscore the potential of Cyrene as a sustainable alternative for polymeric synthesis.
期刊介绍:
Langmuir is an interdisciplinary journal publishing articles in the following subject categories:
Colloids: surfactants and self-assembly, dispersions, emulsions, foams
Interfaces: adsorption, reactions, films, forces
Biological Interfaces: biocolloids, biomolecular and biomimetic materials
Materials: nano- and mesostructured materials, polymers, gels, liquid crystals
Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry
Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals
However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do?
Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*.
This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).