Cyclic jetting enables microbubble-mediated drug delivery

IF 17.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Nature Physics Pub Date : 2025-02-21 DOI:10.1038/s41567-025-02785-0
Marco Cattaneo, Giulia Guerriero, Gazendra Shakya, Lisa A. Krattiger, Lorenza G. Paganella, Maria L. Narciso, Outi Supponen
{"title":"Cyclic jetting enables microbubble-mediated drug delivery","authors":"Marco Cattaneo, Giulia Guerriero, Gazendra Shakya, Lisa A. Krattiger, Lorenza G. Paganella, Maria L. Narciso, Outi Supponen","doi":"10.1038/s41567-025-02785-0","DOIUrl":null,"url":null,"abstract":"<p>The pursuit of targeted therapies capable of overcoming biological barriers, including the blood‚Äìbrain barrier, has spurred the investigation of stimuli-responsive microagents that can improve therapeutic efficacy and reduce undesirable side effects. Intravenously administered, ultrasound-responsive microbubbles are promising agents with demonstrated potential in clinical trials, but the mechanism underlying drug absorption remains unclear. Here we show that ultrasound-driven single microbubbles puncture the cell membrane and induce drug uptake through stable cyclic microjets. Our theoretical models successfully reproduce the observed bubble and cell dynamic responses. We find that cyclic jets arise from shape instabilities, as opposed to classical inertial jets that are driven by pressure gradients, enabling microjet formation at mild ultrasound pressures below 100‚ÄâkPa. We also establish a threshold for bubble radial expansion beyond which microjets form and facilitate cellular permeation and show that the stress generated by microjetting outperforms previously suggested mechanisms by at least an order of magnitude. Overall, this work elucidates the physics behind microbubble-mediated targeted drug delivery and provides the criteria for its effective and safe application.</p>","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"24 1","pages":""},"PeriodicalIF":17.6000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41567-025-02785-0","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The pursuit of targeted therapies capable of overcoming biological barriers, including the blood–brain barrier, has spurred the investigation of stimuli-responsive microagents that can improve therapeutic efficacy and reduce undesirable side effects. Intravenously administered, ultrasound-responsive microbubbles are promising agents with demonstrated potential in clinical trials, but the mechanism underlying drug absorption remains unclear. Here we show that ultrasound-driven single microbubbles puncture the cell membrane and induce drug uptake through stable cyclic microjets. Our theoretical models successfully reproduce the observed bubble and cell dynamic responses. We find that cyclic jets arise from shape instabilities, as opposed to classical inertial jets that are driven by pressure gradients, enabling microjet formation at mild ultrasound pressures below 100 kPa. We also establish a threshold for bubble radial expansion beyond which microjets form and facilitate cellular permeation and show that the stress generated by microjetting outperforms previously suggested mechanisms by at least an order of magnitude. Overall, this work elucidates the physics behind microbubble-mediated targeted drug delivery and provides the criteria for its effective and safe application.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Physics
Nature Physics 物理-物理:综合
CiteScore
30.40
自引率
2.00%
发文量
349
审稿时长
4-8 weeks
期刊介绍: Nature Physics is dedicated to publishing top-tier original research in physics with a fair and rigorous review process. It provides high visibility and access to a broad readership, maintaining high standards in copy editing and production, ensuring rapid publication, and maintaining independence from academic societies and other vested interests. The journal presents two main research paper formats: Letters and Articles. Alongside primary research, Nature Physics serves as a central source for valuable information within the physics community through Review Articles, News & Views, Research Highlights covering crucial developments across the physics literature, Commentaries, Book Reviews, and Correspondence.
期刊最新文献
Diffraction minima resolve point scatterers at few hundredths of the wavelength Cyclic jetting enables microbubble-mediated drug delivery Topology shapes dynamics of higher-order networks Universal dissipative dynamics in strongly correlated quantum gases Author Correction: Magnetic flux trapping in hydrogen-rich high-temperature superconductors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1