Directed Electron Modulation Stabilizes Iridium Oxide Clusters for High-Current-Density Oxygen Evolution

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Functional Materials Pub Date : 2024-12-18 DOI:10.1002/adfm.202416385
Xian He, Jiaqi Tan, Bohan Deng, Wei Zhao, Zhuting Zhang, Zhichuan Zheng, Yufeng Wu, Chong Yang, Xibo Li, Ming Lei, Hongyi Liu, Kai Huang, Hui Wu
{"title":"Directed Electron Modulation Stabilizes Iridium Oxide Clusters for High-Current-Density Oxygen Evolution","authors":"Xian He, Jiaqi Tan, Bohan Deng, Wei Zhao, Zhuting Zhang, Zhichuan Zheng, Yufeng Wu, Chong Yang, Xibo Li, Ming Lei, Hongyi Liu, Kai Huang, Hui Wu","doi":"10.1002/adfm.202416385","DOIUrl":null,"url":null,"abstract":"The rapid advancement of the green hydrogen industry has driven a surge in demand for devices that operate over a broad range of current density. Despite this, the development of stable iridium-based catalysts for high-current-density applications in oxygen evolution reactions remains a significant challenge. In this study, directed electron modulation (DEM) of iridium oxide clusters on cobalt hydroxide nanosheets is achieved using a cyclic Joule heating strategy in pure water. The strategy achieves a rapid change of environmental energy during electronic modulation through Joule heating, which ensures strong electronic coupling between IrO<sub>2</sub> and Co(OH)<sub>2</sub> without significant changes in initial catalyst nanostructure and cluster size. Directed electron modulation optimizes the reactant adsorption ability of the active center (IrO<sub>2</sub> cluster) and corresponding reaction kinetics are improved, resulting in the catalyst (DEM-IrO<sub>2</sub>@Co(OH)<sub>2</sub>-NF) showing excellent performance. The DEM-IrO<sub>2</sub>@Co(OH)<sub>2</sub>-NF exhibits excellent catalytic activity in alkaline electrolytes with only 296 mV overpotential up to 1 A cm<sup>−2</sup> and no significant degradation in 1000 h stability test at 1 A cm<sup>−2</sup>. Additionally, the anion exchange membrane electrolyzer using DEM-IrO<sub>2</sub>@Co(OH)<sub>2</sub>-NF||Pt/C requires only 1.68 V at 1 A cm<sup>−2</sup> and remains stable for 200 h. This work will provide new directions for optimization of active centers.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"21 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202416385","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The rapid advancement of the green hydrogen industry has driven a surge in demand for devices that operate over a broad range of current density. Despite this, the development of stable iridium-based catalysts for high-current-density applications in oxygen evolution reactions remains a significant challenge. In this study, directed electron modulation (DEM) of iridium oxide clusters on cobalt hydroxide nanosheets is achieved using a cyclic Joule heating strategy in pure water. The strategy achieves a rapid change of environmental energy during electronic modulation through Joule heating, which ensures strong electronic coupling between IrO2 and Co(OH)2 without significant changes in initial catalyst nanostructure and cluster size. Directed electron modulation optimizes the reactant adsorption ability of the active center (IrO2 cluster) and corresponding reaction kinetics are improved, resulting in the catalyst (DEM-IrO2@Co(OH)2-NF) showing excellent performance. The DEM-IrO2@Co(OH)2-NF exhibits excellent catalytic activity in alkaline electrolytes with only 296 mV overpotential up to 1 A cm−2 and no significant degradation in 1000 h stability test at 1 A cm−2. Additionally, the anion exchange membrane electrolyzer using DEM-IrO2@Co(OH)2-NF||Pt/C requires only 1.68 V at 1 A cm−2 and remains stable for 200 h. This work will provide new directions for optimization of active centers.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
绿色制氢工业的快速发展推动了对可在宽电流密度范围内运行的设备的需求激增。尽管如此,为氧进化反应中的高电流密度应用开发稳定的铱基催化剂仍然是一项重大挑战。本研究采用循环焦耳加热策略,在纯水中实现了氢氧化钴纳米片上氧化铱团簇的定向电子调制(DEM)。该策略通过焦耳加热实现了电子调制过程中环境能量的快速变化,确保了 IrO2 和 Co(OH)2 之间的强电子耦合,而不会显著改变催化剂的初始纳米结构和团簇尺寸。定向电子调制优化了活性中心(IrO2 团簇)对反应物的吸附能力,相应地改善了反应动力学,从而使催化剂(DEM-IrO2@Co(OH)2-NF)表现出优异的性能。DEM-IrO2@Co(OH)2-NF 在碱性电解质中表现出极佳的催化活性,在 1 A cm-2 的条件下过电位仅为 296 mV,在 1 A cm-2 条件下进行 1000 小时稳定性测试也没有明显降解。此外,使用 DEM-IrO2@Co(OH)2-NF||Pt/C 的阴离子交换膜电解槽在 1 A cm-2 下仅需要 1.68 V 的电压,并可保持稳定 200 小时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
相关文献
A robust chromium–iridium oxide catalyst for high-current–density acidic oxygen evolution in proton exchange membrane electrolyzers†
IF 32.5 1区 材料科学Energy & Environmental SciencePub Date : 2023-06-14 DOI: 10.1039/D3EE01192E
Shiyu Ge, Ruikuan Xie, Bing Huang, Zhiyuan Zhang, Heming Liu, Xin Kang, Shuqi Hu, Shaohai Li, Yuting Luo, Qiangmin Yu, Jingwei Wang, Guoliang Chai, Lunhui Guan, Hui-Ming Cheng and Bilu Liu
Improved durability of iridium oxide coated titanium anode with interlayers for oxygen evolution at high current densities
IF 6.6 3区 材料科学Electrochimica ActaPub Date : 1995-05-01 DOI: 10.1016/0013-4686(94)00339-3
Y. Kamegaya, K. Sasaki, M. Oguri, T. Asaki, Hidehiko Kobayashi, T. Mitamura
Interfacial electronic modulation by Fe2O3/NiFe-LDHs heterostructures for efficient oxygen evolution at high current density
IF 22.1 1区 化学Applied Catalysis B: EnvironmentalPub Date : 2022-06-05 DOI: 10.1016/j.apcatb.2022.121097
Cheng-Fei Li , Ling-Jie Xie , Jia-Wei Zhao , Lin-Fei Gu , Jin-Qi Wu , Gao-Ren Li
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
期刊最新文献
Enzymatic Redox‐Mediated Fabrication of Textiles with Multimode Synergistic Antimicrobial Activity through Embedding Nanosilver in Dynamic Polydisulfide Networks Metal Ion “Adjuvant” [Si─O4] Tetrahedron Addresses Coagulation Interruption and Promotes Multi‐Tissue Regeneration via Smart Ionic Capturing and Cell Membrane Transporting Nanozyme‐Engineered Hyaluronic Acid Adhesives Loading Platelet‐Rich Plasma for Multilayered Osteoarthritis Treatment with Pain‐Relief Effect Polymer Brush Growth by Surface‐Initiated Ring‐Opening Polymerization from a Cross‐Linked Polymer Thin Film Hierarchically Porous Carbon Colloidal Aerogels for Highly Efficient Flow Cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1