Highly Efficient and Linearly Polarized Light Emission of Micro-LED Integrated with Double-Functional Meta-Grating

IF 9.6 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Nano Letters Pub Date : 2024-12-18 DOI:10.1021/acs.nanolett.4c04914
Xuzheng Wang, Zhenhuan Tian, Shuheng Pei, Chuangcheng Xu, Qinyue Sun, Jiadong Zhang, Jieming Wei, Feng Li, Feng Yun
{"title":"Highly Efficient and Linearly Polarized Light Emission of Micro-LED Integrated with Double-Functional Meta-Grating","authors":"Xuzheng Wang, Zhenhuan Tian, Shuheng Pei, Chuangcheng Xu, Qinyue Sun, Jiadong Zhang, Jieming Wei, Feng Li, Feng Yun","doi":"10.1021/acs.nanolett.4c04914","DOIUrl":null,"url":null,"abstract":"Linearly polarized micro light-emitting diodes (LP-Micro-LEDs) exhibit exceptional potential across diverse fields. The existing methods to introduce polarization to initially unpolarized Micro-LEDs and to further enhance the degree of polarization are, however, at the expense of low luminous efficiency. We fabricated a GaN-based blue Micro-LED integrated with a Al nanograting and a specially designed Ag/GaN meta-grating, which overcomes the dilemma between the luminous efficiency and polarization degree by simultaneously introducing the effects of mode selection and energy recycling. The fabricated LP-Micro-LED achieves an average polarization extinction ratio (ER) of 21.92 dB within ±60°, showing a 2.04-fold increase in efficiency and a 1.32-fold increase in ER compared to the Ag reflector design. This approach opens the way toward the next generation of high-efficiency and low-cost optoelectronic devices in encryption, displays, optical communication, and medicine.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"55 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c04914","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Linearly polarized micro light-emitting diodes (LP-Micro-LEDs) exhibit exceptional potential across diverse fields. The existing methods to introduce polarization to initially unpolarized Micro-LEDs and to further enhance the degree of polarization are, however, at the expense of low luminous efficiency. We fabricated a GaN-based blue Micro-LED integrated with a Al nanograting and a specially designed Ag/GaN meta-grating, which overcomes the dilemma between the luminous efficiency and polarization degree by simultaneously introducing the effects of mode selection and energy recycling. The fabricated LP-Micro-LED achieves an average polarization extinction ratio (ER) of 21.92 dB within ±60°, showing a 2.04-fold increase in efficiency and a 1.32-fold increase in ER compared to the Ag reflector design. This approach opens the way toward the next generation of high-efficiency and low-cost optoelectronic devices in encryption, displays, optical communication, and medicine.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
期刊最新文献
Intrinsically Slow Cooling of Hot Electrons in CdSe Nanocrystals Compared to CdS Highly Efficient and Linearly Polarized Light Emission of Micro-LED Integrated with Double-Functional Meta-Grating Real-Time Structural Dynamics at the 3D/2D Perovskite Interface in CsPbBr3/PEA2PbBr4 Nano-heterostructures Operando Observation of Electrically Triggered Phase Transition in Thin Cu2S Crystal Hyperbolic-Metamaterial-Based Optical Fiber SPR Sensor Enhanced by a Smart Hydrogel for Perspiration pH Measurements
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1