Meiyan Wang, Yimeng Yu, Lin Liao, Zukang Zhu, Mingqi Zhang, Dongwang Yang, Xianli Su, Qingjie Zhang, Xinfeng Tang, Jinsong Wu
{"title":"Operando Observation of Electrically Triggered Phase Transition in Thin Cu2S Crystal","authors":"Meiyan Wang, Yimeng Yu, Lin Liao, Zukang Zhu, Mingqi Zhang, Dongwang Yang, Xianli Su, Qingjie Zhang, Xinfeng Tang, Jinsong Wu","doi":"10.1021/acs.nanolett.4c05293","DOIUrl":null,"url":null,"abstract":"Cu<sub>2</sub>S has been identified as a functional material of memristors with multilevel resistance switching. However, as the migration of Cu ions under the electric field is tangled with defect evolution and phase transition, the electroresistance mechanism of Cu<sub>2</sub>S remains largely unclear. Here, the electrically triggered phase transition was studied by <i>in situ</i> transmission electron microscopy. It is found that the γ(L)-Cu<sub>2</sub>S phase is transformed into β-Cu<sub>2</sub>S accompanied by the change in resistance, when a voltage lower than 1 V is applied at room temperature. The electrically triggered phase transition is also observed at −150 °C. Precipitation of metal Cu nanoparticles is observed when the applied voltage is further increased after the complete formation of β-Cu<sub>2</sub>S. These findings indicate that Cu<sub>2</sub>S can achieve fast and controllable phase switching through electrical tuning when the energy consumption is appropriately controlled, offering the potential for low-power electronic devices such as memory and sensors.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"86 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c05293","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Cu2S has been identified as a functional material of memristors with multilevel resistance switching. However, as the migration of Cu ions under the electric field is tangled with defect evolution and phase transition, the electroresistance mechanism of Cu2S remains largely unclear. Here, the electrically triggered phase transition was studied by in situ transmission electron microscopy. It is found that the γ(L)-Cu2S phase is transformed into β-Cu2S accompanied by the change in resistance, when a voltage lower than 1 V is applied at room temperature. The electrically triggered phase transition is also observed at −150 °C. Precipitation of metal Cu nanoparticles is observed when the applied voltage is further increased after the complete formation of β-Cu2S. These findings indicate that Cu2S can achieve fast and controllable phase switching through electrical tuning when the energy consumption is appropriately controlled, offering the potential for low-power electronic devices such as memory and sensors.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.