{"title":"Intelligent Power Equipment for Autonomous Situational Awareness and Active Operation and Maintenance","authors":"Shice Zhao;Hongshan Zhao","doi":"10.35833/MPCE.2023.000697","DOIUrl":null,"url":null,"abstract":"The rapid development of the power system requires high reliability and real-time situational awareness of power equipment. The current agent-based condition-monitoring perception mode is not suitable for widely distributed power equipment due to the potential of single-point failure and high communication and data costs. Therefore, the technical development path of the power equipment perception mode is analyzed based on the development trend of the future power system. The concept of intelligent power equipment (IPE) is introduced, which combines online sensing, data mining, remote communication, and primary and secondary fusion technologies to develop an intelligent object that can realize autonomous situational awareness. IPE can actively interact with the control center and operation and maintenance (O&M) personnel according to its situation. This gives the power company an efficient and comprehensive perception of the equipment. Then, based on the actual situation of the power grid and emerging technology research directions, the challenges faced by each key technology supporting IPE and the corresponding technology enhancement solutions are presented. In addition, the O&M method applicable to IPE is discussed, which achieves proactive maintenance and prognosis management through autonomous equipment perception. Finally, the feasibility and effectiveness of IPE are verified by the performance of current IPE applications in an actual power grid.","PeriodicalId":51326,"journal":{"name":"Journal of Modern Power Systems and Clean Energy","volume":"12 6","pages":"2081-2090"},"PeriodicalIF":5.7000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10599365","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Modern Power Systems and Clean Energy","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10599365/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The rapid development of the power system requires high reliability and real-time situational awareness of power equipment. The current agent-based condition-monitoring perception mode is not suitable for widely distributed power equipment due to the potential of single-point failure and high communication and data costs. Therefore, the technical development path of the power equipment perception mode is analyzed based on the development trend of the future power system. The concept of intelligent power equipment (IPE) is introduced, which combines online sensing, data mining, remote communication, and primary and secondary fusion technologies to develop an intelligent object that can realize autonomous situational awareness. IPE can actively interact with the control center and operation and maintenance (O&M) personnel according to its situation. This gives the power company an efficient and comprehensive perception of the equipment. Then, based on the actual situation of the power grid and emerging technology research directions, the challenges faced by each key technology supporting IPE and the corresponding technology enhancement solutions are presented. In addition, the O&M method applicable to IPE is discussed, which achieves proactive maintenance and prognosis management through autonomous equipment perception. Finally, the feasibility and effectiveness of IPE are verified by the performance of current IPE applications in an actual power grid.
期刊介绍:
Journal of Modern Power Systems and Clean Energy (MPCE), commencing from June, 2013, is a newly established, peer-reviewed and quarterly published journal in English. It is the first international power engineering journal originated in mainland China. MPCE publishes original papers, short letters and review articles in the field of modern power systems with focus on smart grid technology and renewable energy integration, etc.