Improving the electrochemical performance of supercapacitors through the use of NiO/Ag–TiO2 ternary nanocomposite: synthesis, characterization, and performance evaluation

IF 2.8 4区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Journal of Materials Science: Materials in Electronics Pub Date : 2024-12-17 DOI:10.1007/s10854-024-14013-1
Somayeh Mehdigholami, Masood Hamadanian, Mohammad Reza Memarzadeh
{"title":"Improving the electrochemical performance of supercapacitors through the use of NiO/Ag–TiO2 ternary nanocomposite: synthesis, characterization, and performance evaluation","authors":"Somayeh Mehdigholami,&nbsp;Masood Hamadanian,&nbsp;Mohammad Reza Memarzadeh","doi":"10.1007/s10854-024-14013-1","DOIUrl":null,"url":null,"abstract":"<div><p>Supercapacitors gain significant attention in the energy storage industry due to their high-power density and cyclic stability. This study utilizes sol–gel and co-precipitation techniques to produce nanocomposite electrodes, specifically NiO/Ag–TiO<sub>2</sub>(x), for use in supercapacitors. The results of X-ray diffraction (XRD), scanning electron microscopy (SEM), nitrogen absorption–desorption (BET), cyclic voltammetry (CV), galvanostatic charge–discharge (GCD), and electrochemical impedance spectroscopy (EIS) analyses demonstrate that the NiO/Ag–TiO<sub>2</sub>(5) nanocomposite electrode outperforms the pure NiO electrode. This electrode exhibits a specific capacitance of 450.76 F g<sup>−1</sup>, an energy density of 15.65 Wh kg<sup>−1</sup>, and a power density of 250 W kg<sup>−1</sup> at current densities of 1 A g<sup>−1</sup>. Furthermore, it maintains a capacitance retention rate of 87.9% is maintained after 1000 cycles at 6 A g<sup>−1</sup>.</p></div>","PeriodicalId":646,"journal":{"name":"Journal of Materials Science: Materials in Electronics","volume":"35 36","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science: Materials in Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10854-024-14013-1","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Supercapacitors gain significant attention in the energy storage industry due to their high-power density and cyclic stability. This study utilizes sol–gel and co-precipitation techniques to produce nanocomposite electrodes, specifically NiO/Ag–TiO2(x), for use in supercapacitors. The results of X-ray diffraction (XRD), scanning electron microscopy (SEM), nitrogen absorption–desorption (BET), cyclic voltammetry (CV), galvanostatic charge–discharge (GCD), and electrochemical impedance spectroscopy (EIS) analyses demonstrate that the NiO/Ag–TiO2(5) nanocomposite electrode outperforms the pure NiO electrode. This electrode exhibits a specific capacitance of 450.76 F g−1, an energy density of 15.65 Wh kg−1, and a power density of 250 W kg−1 at current densities of 1 A g−1. Furthermore, it maintains a capacitance retention rate of 87.9% is maintained after 1000 cycles at 6 A g−1.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过使用 NiO/Ag-TiO2 三元纳米复合材料提高超级电容器的电化学性能:合成、表征和性能评估
超级电容器因其高功率密度和循环稳定性而在储能行业受到广泛关注。本研究利用溶胶-凝胶和共沉淀技术生产纳米复合电极,特别是用于超级电容器的NiO/ Ag-TiO2 (x)。x射线衍射(XRD)、扫描电镜(SEM)、氮吸收-解吸(BET)、循环伏安(CV)、恒流充放电(GCD)和电化学阻抗谱(EIS)分析结果表明,NiO/ Ag-TiO2(5)纳米复合电极的性能优于纯NiO电极。在电流密度为1a g−1时,该电极的比电容为450.76 F g−1,能量密度为15.65 Wh kg−1,功率密度为250w kg−1。此外,在6 a g−1下,经过1000次循环后,它保持了87.9%的电容保持率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Materials Science: Materials in Electronics
Journal of Materials Science: Materials in Electronics 工程技术-材料科学:综合
CiteScore
5.00
自引率
7.10%
发文量
1931
审稿时长
2 months
期刊介绍: The Journal of Materials Science: Materials in Electronics is an established refereed companion to the Journal of Materials Science. It publishes papers on materials and their applications in modern electronics, covering the ground between fundamental science, such as semiconductor physics, and work concerned specifically with applications. It explores the growth and preparation of new materials, as well as their processing, fabrication, bonding and encapsulation, together with the reliability, failure analysis, quality assurance and characterization related to the whole range of applications in electronics. The Journal presents papers in newly developing fields such as low dimensional structures and devices, optoelectronics including III-V compounds, glasses and linear/non-linear crystal materials and lasers, high Tc superconductors, conducting polymers, thick film materials and new contact technologies, as well as the established electronics device and circuit materials.
期刊最新文献
Characterization of (Mg1-xZnx)TiO3 ceramics-based DRO as a potential silent oscillator in S-band radar system Microstructure and Raman spectra analysis of [(Zn0.8Mg0.2)1-xNix]2SiO4 microwave dielectric ceramics featuring low relative permittivity and low dielectric loss A comprehensive study of lanthanum aluminate nanoparticles prepared by the pechini method: from structure to function Enhanced microwave absorption and thermal conductivity of biomass-derived BCNO materials Electronic respond of Au/n-Si Schottky barrier diodes with PVP interlayer doped by Nd2O3 particles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1