Xinyi Lin, Shuang Han, Nan Zhang, Xiaohua Ling, Zhaochen Bai, Xueling Ou
{"title":"Inferring Distant Relationships From Dense SNP Data Utilizing Two Genealogy Algorithms.","authors":"Xinyi Lin, Shuang Han, Nan Zhang, Xiaohua Ling, Zhaochen Bai, Xueling Ou","doi":"10.1002/elps.202400208","DOIUrl":null,"url":null,"abstract":"<p><p>A highly esteemed method known as investigative genetic genealogy (IGG) has been developed to identify DNA samples from forensic crime scenes and human remains of disaster victims. With the advent of next-generation sequencing, it is now feasible to access information on millions of SNPs typed in a single sequencing run that fulfill the requirements for kinship inference. However, challenges such as the poor quality of forensic samples, the high cost associated with sequencing technology, and privacy concerns regarding large-scale genetic databases remain unresolved in this field. In the present study, we validated the identification of relationships up to the seventh degree using two genealogy algorithms (IBIS and KING) under various parameter settings. This was accomplished through whole genome sequencing data derived from two southern Chinese Han pedigrees during an initial phase, while also exploring workflows adapted for low-quality samples. To achieve this objective, low-coverage whole genome sequencing data were downsampled from high-coverage original datasets; additionally, mimic SNP array data-containing less information but offering greater accessibility-were prepared as reference samples. Through a series of experimental analyses, we not only validate the applicability of selected processing procedures and inference tools for low-coverage samples but also proposed that a meticulously crafted site filtering strategy can significantly improve the accuracy of kinship identification. This acknowledges the necessity for further systematic evidence in future research endeavors.</p>","PeriodicalId":11596,"journal":{"name":"ELECTROPHORESIS","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ELECTROPHORESIS","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/elps.202400208","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
A highly esteemed method known as investigative genetic genealogy (IGG) has been developed to identify DNA samples from forensic crime scenes and human remains of disaster victims. With the advent of next-generation sequencing, it is now feasible to access information on millions of SNPs typed in a single sequencing run that fulfill the requirements for kinship inference. However, challenges such as the poor quality of forensic samples, the high cost associated with sequencing technology, and privacy concerns regarding large-scale genetic databases remain unresolved in this field. In the present study, we validated the identification of relationships up to the seventh degree using two genealogy algorithms (IBIS and KING) under various parameter settings. This was accomplished through whole genome sequencing data derived from two southern Chinese Han pedigrees during an initial phase, while also exploring workflows adapted for low-quality samples. To achieve this objective, low-coverage whole genome sequencing data were downsampled from high-coverage original datasets; additionally, mimic SNP array data-containing less information but offering greater accessibility-were prepared as reference samples. Through a series of experimental analyses, we not only validate the applicability of selected processing procedures and inference tools for low-coverage samples but also proposed that a meticulously crafted site filtering strategy can significantly improve the accuracy of kinship identification. This acknowledges the necessity for further systematic evidence in future research endeavors.
期刊介绍:
ELECTROPHORESIS is an international journal that publishes original manuscripts on all aspects of electrophoresis, and liquid phase separations (e.g., HPLC, micro- and nano-LC, UHPLC, micro- and nano-fluidics, liquid-phase micro-extractions, etc.).
Topics include new or improved analytical and preparative methods, sample preparation, development of theory, and innovative applications of electrophoretic and liquid phase separations methods in the study of nucleic acids, proteins, carbohydrates natural products, pharmaceuticals, food analysis, environmental species and other compounds of importance to the life sciences.
Papers in the areas of microfluidics and proteomics, which are not limited to electrophoresis-based methods, will also be accepted for publication. Contributions focused on hyphenated and omics techniques are also of interest. Proteomics is within the scope, if related to its fundamentals and new technical approaches. Proteomics applications are only considered in particular cases.
Papers describing the application of standard electrophoretic methods will not be considered.
Papers on nanoanalysis intended for publication in ELECTROPHORESIS should focus on one or more of the following topics:
• Nanoscale electrokinetics and phenomena related to electric double layer and/or confinement in nano-sized geometry
• Single cell and subcellular analysis
• Nanosensors and ultrasensitive detection aspects (e.g., involving quantum dots, "nanoelectrodes" or nanospray MS)
• Nanoscale/nanopore DNA sequencing (next generation sequencing)
• Micro- and nanoscale sample preparation
• Nanoparticles and cells analyses by dielectrophoresis
• Separation-based analysis using nanoparticles, nanotubes and nanowires.