Predicting cyclins based on key features and machine learning methods

IF 4.2 3区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Methods Pub Date : 2025-02-01 DOI:10.1016/j.ymeth.2024.12.009
Cheng-Yan Wu , Zhi-Xue Xu , Nan Li , Dan-Yang Qi , Hong-Ye Wu , Hui Ding , Yan-Ting Jin
{"title":"Predicting cyclins based on key features and machine learning methods","authors":"Cheng-Yan Wu ,&nbsp;Zhi-Xue Xu ,&nbsp;Nan Li ,&nbsp;Dan-Yang Qi ,&nbsp;Hong-Ye Wu ,&nbsp;Hui Ding ,&nbsp;Yan-Ting Jin","doi":"10.1016/j.ymeth.2024.12.009","DOIUrl":null,"url":null,"abstract":"<div><div>Cyclins are a group of proteins that regulate the cell cycle process by modulating various stages of cell division to ensure correct cell proliferation, differentiation, and apoptosis. Research on cyclins is crucial for understanding the biological functions and pathological states of cells. However, current research on cyclin identification based on machine learning only focuses on accuracy ignoring the interpretability of features. Therefore, in this study, we pay more attention to the interpretation and analysis of key features associated with cyclins. Firstly, we developed an SVM-based model for identifying cyclins with an accuracy of 92.8% through 5-fold. Then we analyzed the physicochemical properties of the 14 key features used in the model construction and identified the G and charged C1 features that are critical for distinguishing cyclins from non-cyclins. Furthermore, we constructed an SVM-based model using only these two features with an accuracy of 81.3% through the leave-one-out cross-validation. Our study shows that cyclins differ from non-cyclins in their physicochemical properties and that using only two features can achieve good prediction accuracy.</div></div>","PeriodicalId":390,"journal":{"name":"Methods","volume":"234 ","pages":"Pages 112-119"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1046202324002822","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Cyclins are a group of proteins that regulate the cell cycle process by modulating various stages of cell division to ensure correct cell proliferation, differentiation, and apoptosis. Research on cyclins is crucial for understanding the biological functions and pathological states of cells. However, current research on cyclin identification based on machine learning only focuses on accuracy ignoring the interpretability of features. Therefore, in this study, we pay more attention to the interpretation and analysis of key features associated with cyclins. Firstly, we developed an SVM-based model for identifying cyclins with an accuracy of 92.8% through 5-fold. Then we analyzed the physicochemical properties of the 14 key features used in the model construction and identified the G and charged C1 features that are critical for distinguishing cyclins from non-cyclins. Furthermore, we constructed an SVM-based model using only these two features with an accuracy of 81.3% through the leave-one-out cross-validation. Our study shows that cyclins differ from non-cyclins in their physicochemical properties and that using only two features can achieve good prediction accuracy.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于关键特征和机器学习方法预测周期蛋白。
细胞周期蛋白是一组通过调节细胞分裂的各个阶段来调节细胞周期过程的蛋白质,以确保正确的细胞增殖、分化和凋亡。细胞周期蛋白的研究对于理解细胞的生物学功能和病理状态至关重要。然而,目前基于机器学习的周期蛋白识别研究只注重准确性,忽略了特征的可解释性。因此,在本研究中,我们将更多地关注与细胞周期蛋白相关的关键特征的解释和分析。首先,我们开发了一个基于支持向量机的模型来识别周期蛋白,准确率为92.8%。然后,我们分析了模型构建中使用的14个关键特征的物理化学性质,并确定了区分细胞周期蛋白和非细胞周期蛋白的关键特征G和带电C1。此外,我们通过留一交叉验证,仅使用这两个特征构建了基于svm的模型,准确率为81.3%。我们的研究表明,周期蛋白与非周期蛋白在物理化学性质上有所不同,仅使用两个特征就可以获得良好的预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Methods
Methods 生物-生化研究方法
CiteScore
9.80
自引率
2.10%
发文量
222
审稿时长
11.3 weeks
期刊介绍: Methods focuses on rapidly developing techniques in the experimental biological and medical sciences. Each topical issue, organized by a guest editor who is an expert in the area covered, consists solely of invited quality articles by specialist authors, many of them reviews. Issues are devoted to specific technical approaches with emphasis on clear detailed descriptions of protocols that allow them to be reproduced easily. The background information provided enables researchers to understand the principles underlying the methods; other helpful sections include comparisons of alternative methods giving the advantages and disadvantages of particular methods, guidance on avoiding potential pitfalls, and suggestions for troubleshooting.
期刊最新文献
Production of AFM wedged cantilevers for stress-relaxation experiments: Uniaxial loading of soft, spherical cells Latest trends & strategies in ocular drug delivery A high sensitivity assay of UBE3A ubiquitin ligase activity HybProm: An attention-assisted hybrid CNN-BiLSTM model for the interpretable prediction of DNA promoter A transferability-guided protein-ligand interaction prediction method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1