DNEA: an R package for fast and versatile data-driven network analysis of metabolomics data.

IF 2.9 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS BMC Bioinformatics Pub Date : 2024-12-18 DOI:10.1186/s12859-024-05994-1
Christopher Patsalis, Gayatri Iyer, Marci Brandenburg, Alla Karnovsky, George Michailidis
{"title":"DNEA: an R package for fast and versatile data-driven network analysis of metabolomics data.","authors":"Christopher Patsalis, Gayatri Iyer, Marci Brandenburg, Alla Karnovsky, George Michailidis","doi":"10.1186/s12859-024-05994-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Metabolomics is a high-throughput technology that measures small molecule metabolites in cells, tissues or biofluids. Analysis of metabolomics data is a multi-step process that involves data processing, quality control and normalization, followed by statistical and bioinformatics analysis. The latter step often involves pathway analysis to aid biological interpretation of the data. This approach is limited to endogenous metabolites that can be readily mapped to metabolic pathways. An alternative to pathway analysis that can be used for any classes of metabolites, including unknown compounds that are ubiquitous in untargeted metabolomics data, involves defining metabolite-metabolite interactions using experimental data. Our group has developed several network-based methods that use partial correlations of experimentally determined metabolite measurements. These were implemented in CorrelationCalculator and Filigree, two software tools for the analysis of metabolomics data we developed previously. The latter tool implements the Differential Network Enrichment Analysis (DNEA) algorithm. This analysis is useful for building differential networks from metabolomics data containing two experimental groups and identifying differentially enriched metabolic modules. While Filigree is a user-friendly tool, it has certain limitations when used for the analysis of large-scale metabolomics datasets.</p><p><strong>Results: </strong>We developed the DNEA R package for the data-driven network analysis of metabolomics data. We present the DNEA workflow and functionality, algorithm enhancements implemented with respect to the package's predecessor, Filigree, and discuss best practices for analyses. We tested the performance of the DNEA R package and illustrated its features using publicly available metabolomics data from the environmental determinants of diabetes in the young. To our knowledge, this package is the only publicly available tool designed for the construction of biological networks and subsequent enrichment testing for datasets containing exogenous, secondary, and unknown compounds. This greatly expands the scope of traditional enrichment analysis tools that can be used to analyze a relatively small set of well-annotated metabolites.</p><p><strong>Conclusions: </strong>The DNEA R package is a more flexible and powerful implementation of our previously published software tool, Filigree. The modular structure of the package, along with the parallel processing framework built into the most computationally extensive steps of the algorithm, make it a powerful tool for the analysis of large and complex metabolomics datasets.</p>","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":"25 1","pages":"383"},"PeriodicalIF":2.9000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12859-024-05994-1","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Metabolomics is a high-throughput technology that measures small molecule metabolites in cells, tissues or biofluids. Analysis of metabolomics data is a multi-step process that involves data processing, quality control and normalization, followed by statistical and bioinformatics analysis. The latter step often involves pathway analysis to aid biological interpretation of the data. This approach is limited to endogenous metabolites that can be readily mapped to metabolic pathways. An alternative to pathway analysis that can be used for any classes of metabolites, including unknown compounds that are ubiquitous in untargeted metabolomics data, involves defining metabolite-metabolite interactions using experimental data. Our group has developed several network-based methods that use partial correlations of experimentally determined metabolite measurements. These were implemented in CorrelationCalculator and Filigree, two software tools for the analysis of metabolomics data we developed previously. The latter tool implements the Differential Network Enrichment Analysis (DNEA) algorithm. This analysis is useful for building differential networks from metabolomics data containing two experimental groups and identifying differentially enriched metabolic modules. While Filigree is a user-friendly tool, it has certain limitations when used for the analysis of large-scale metabolomics datasets.

Results: We developed the DNEA R package for the data-driven network analysis of metabolomics data. We present the DNEA workflow and functionality, algorithm enhancements implemented with respect to the package's predecessor, Filigree, and discuss best practices for analyses. We tested the performance of the DNEA R package and illustrated its features using publicly available metabolomics data from the environmental determinants of diabetes in the young. To our knowledge, this package is the only publicly available tool designed for the construction of biological networks and subsequent enrichment testing for datasets containing exogenous, secondary, and unknown compounds. This greatly expands the scope of traditional enrichment analysis tools that can be used to analyze a relatively small set of well-annotated metabolites.

Conclusions: The DNEA R package is a more flexible and powerful implementation of our previously published software tool, Filigree. The modular structure of the package, along with the parallel processing framework built into the most computationally extensive steps of the algorithm, make it a powerful tool for the analysis of large and complex metabolomics datasets.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
BMC Bioinformatics
BMC Bioinformatics 生物-生化研究方法
CiteScore
5.70
自引率
3.30%
发文量
506
审稿时长
4.3 months
期刊介绍: BMC Bioinformatics is an open access, peer-reviewed journal that considers articles on all aspects of the development, testing and novel application of computational and statistical methods for the modeling and analysis of all kinds of biological data, as well as other areas of computational biology. BMC Bioinformatics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.
期刊最新文献
scEGOT: single-cell trajectory inference framework based on entropic Gaussian mixture optimal transport. MISDP: multi-task fusion visit interval for sequential diagnosis prediction. Prediction of miRNA-disease associations based on PCA and cascade forest. DeepMiRBP: a hybrid model for predicting microRNA-protein interactions based on transfer learning and cosine similarity. DNEA: an R package for fast and versatile data-driven network analysis of metabolomics data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1