Liraglutide and GLP-1(9–37) alleviated hepatic ischemia-reperfusion injury by inhibiting ferroptosis via GSK3β/Nrf2 pathway and SMAD159/Hepcidin/FTH pathway

IF 10.7 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Redox Biology Pub Date : 2025-02-01 DOI:10.1016/j.redox.2024.103468
Chenqi Lu , Cong Xu , Shanglin Li , Haiqiang Ni , Jun Yang
{"title":"Liraglutide and GLP-1(9–37) alleviated hepatic ischemia-reperfusion injury by inhibiting ferroptosis via GSK3β/Nrf2 pathway and SMAD159/Hepcidin/FTH pathway","authors":"Chenqi Lu ,&nbsp;Cong Xu ,&nbsp;Shanglin Li ,&nbsp;Haiqiang Ni ,&nbsp;Jun Yang","doi":"10.1016/j.redox.2024.103468","DOIUrl":null,"url":null,"abstract":"<div><div>Ferroptosis plays a pivotal role in the pathogenesis of ischemia-reperfusion injury (IRI). Liraglutide, as a GLP-1 receptor (GLP-1R) agonist, has exhibited extensive biological effects beyond its hypoglycemic action. Recent studies have shed light on the regulatory influence of Liraglutide on ferroptosis, yet the precise underlying mechanism remains elusive. GLP-1(9–37), as a metabolite of GLP-1, has a low affinity to GLP-1R. Its effect on ferroptosis remains unknown. In this study, we investigated the effects of Liraglutide and GLP-1(9–37) on the ferroptosis during hepatic ischemia-repferfusion (I/R), as well as the underlying specific mechanisms. We found that the administration of Liraglutide alleviated I/R-induced liver injury with less iron accumulation and lower lipid peroxidation, which was not entirely dependent on the presence of GLP-1R. Similarly, GLP-1(9–37) also exhibited these effects. Besides, both of them increased GPX4 expression and decreased COX2 expression. These effects were reversed by a High-Iron Diet. In vitro study showed similar results. In mechanism study, we found that both Liraglutide and GLP-1(9–37) treatment promoted the nuclear translocation of Nrf2 by inhibiting GSK-3β, thereby reducing lipid peroxides. Furthermore, they increased FTH and FTL expression via the SMAD159/Hepcidin pathway, which contributed to the decreased iron accumulation. In conclusion, this study determined that both Liraglutide and GLP-1(9–37) alleviated hepatic ischemia-reperfusion injury (HIRI) by suppressing ferroptosis via the activation of the GSK3β/Nrf2 pathway and the SMAD159/Hepcidin/FTH pathway.</div></div>","PeriodicalId":20998,"journal":{"name":"Redox Biology","volume":"79 ","pages":"Article 103468"},"PeriodicalIF":10.7000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11719303/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Redox Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213231724004464","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Ferroptosis plays a pivotal role in the pathogenesis of ischemia-reperfusion injury (IRI). Liraglutide, as a GLP-1 receptor (GLP-1R) agonist, has exhibited extensive biological effects beyond its hypoglycemic action. Recent studies have shed light on the regulatory influence of Liraglutide on ferroptosis, yet the precise underlying mechanism remains elusive. GLP-1(9–37), as a metabolite of GLP-1, has a low affinity to GLP-1R. Its effect on ferroptosis remains unknown. In this study, we investigated the effects of Liraglutide and GLP-1(9–37) on the ferroptosis during hepatic ischemia-repferfusion (I/R), as well as the underlying specific mechanisms. We found that the administration of Liraglutide alleviated I/R-induced liver injury with less iron accumulation and lower lipid peroxidation, which was not entirely dependent on the presence of GLP-1R. Similarly, GLP-1(9–37) also exhibited these effects. Besides, both of them increased GPX4 expression and decreased COX2 expression. These effects were reversed by a High-Iron Diet. In vitro study showed similar results. In mechanism study, we found that both Liraglutide and GLP-1(9–37) treatment promoted the nuclear translocation of Nrf2 by inhibiting GSK-3β, thereby reducing lipid peroxides. Furthermore, they increased FTH and FTL expression via the SMAD159/Hepcidin pathway, which contributed to the decreased iron accumulation. In conclusion, this study determined that both Liraglutide and GLP-1(9–37) alleviated hepatic ischemia-reperfusion injury (HIRI) by suppressing ferroptosis via the activation of the GSK3β/Nrf2 pathway and the SMAD159/Hepcidin/FTH pathway.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利拉鲁肽和GLP-1(9-37)通过GSK3β/Nrf2途径和SMAD159/Hepcidin/FTH途径抑制铁下沉,减轻肝缺血再灌注损伤。
铁下垂在缺血再灌注损伤(IRI)的发病机制中起关键作用。利拉鲁肽作为GLP-1受体(GLP-1R)激动剂,除降糖作用外,还表现出广泛的生物学效应。最近的研究揭示了利拉鲁肽对铁下垂的调节作用,但其确切的潜在机制仍然难以捉摸。GLP-1(9-37)作为GLP-1的代谢物,与GLP-1R的亲和力较低。其对铁下垂的影响尚不清楚。在这项研究中,我们研究了利拉鲁肽和GLP-1(9-37)对肝缺血再灌注(I/R)期间铁上沉的影响及其潜在的具体机制。我们发现利拉鲁肽减轻I/ r诱导的肝损伤,减少铁积累和降低脂质过氧化,这并不完全依赖于GLP-1R的存在。同样,GLP-1(9-37)也表现出这些作用。此外,两者均能提高GPX4的表达,降低COX2的表达。这些影响被高铁饮食所逆转。体外实验也显示了类似的结果。在机制研究中,我们发现利拉鲁肽和GLP-1(9-37)处理均通过抑制GSK-3β促进Nrf2的核易位,从而减少脂质过氧化物。此外,他们通过SMAD159/Hepcidin途径增加了FTH和FTL的表达,这有助于减少铁的积累。综上所述,本研究确定利拉鲁肽和GLP-1(9-37)均通过激活GSK3β/Nrf2通路和SMAD159/Hepcidin/FTH通路抑制铁凋亡,从而减轻肝缺血再灌注损伤(HIRI)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Redox Biology
Redox Biology BIOCHEMISTRY & MOLECULAR BIOLOGY-
CiteScore
19.90
自引率
3.50%
发文量
318
审稿时长
25 days
期刊介绍: Redox Biology is the official journal of the Society for Redox Biology and Medicine and the Society for Free Radical Research-Europe. It is also affiliated with the International Society for Free Radical Research (SFRRI). This journal serves as a platform for publishing pioneering research, innovative methods, and comprehensive review articles in the field of redox biology, encompassing both health and disease. Redox Biology welcomes various forms of contributions, including research articles (short or full communications), methods, mini-reviews, and commentaries. Through its diverse range of published content, Redox Biology aims to foster advancements and insights in the understanding of redox biology and its implications.
期刊最新文献
Inhibition of S100A8/A9 ameliorates neuroinflammation by blocking NET formation following traumatic brain injury The nonlinear cysteine redox dynamics in the i-space: A proteoform-centric theory of redox regulation FNDC5/irisin mitigates the cardiotoxic impacts of cancer chemotherapeutics by modulating ROS-dependent and -independent mechanisms Genetic interaction between oxidative stress and body mass index in a Spanish population Niraparib restricts intraperitoneal metastases of ovarian cancer by eliciting CD36-dependent ferroptosis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1