Liraglutide and GLP-1(9-37) alleviated hepatic ischemia-reperfusion injury by inhibiting ferroptosis via GSK3β/Nrf2 pathway and SMAD159/Hepcidin/FTH pathway.

IF 10.7 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Redox Biology Pub Date : 2024-12-12 DOI:10.1016/j.redox.2024.103468
Chenqi Lu, Cong Xu, Shanglin Li, Haiqiang Ni, Jun Yang
{"title":"Liraglutide and GLP-1(9-37) alleviated hepatic ischemia-reperfusion injury by inhibiting ferroptosis via GSK3β/Nrf2 pathway and SMAD159/Hepcidin/FTH pathway.","authors":"Chenqi Lu, Cong Xu, Shanglin Li, Haiqiang Ni, Jun Yang","doi":"10.1016/j.redox.2024.103468","DOIUrl":null,"url":null,"abstract":"<p><p>Ferroptosis plays a pivotal role in the pathogenesis of ischemia-reperfusion injury (IRI). Liraglutide, as a GLP-1 receptor (GLP-1R) agonist, has exhibited extensive biological effects beyond its hypoglycemic action. Recent studies have shed light on the regulatory influence of Liraglutide on ferroptosis, yet the precise underlying mechanism remains elusive. GLP-1(9-37), as a metabolite of GLP-1, has a low affinity to GLP-1R. Its effect on ferroptosis remains unknown. In this study, we investigated the effects of Liraglutide and GLP-1(9-37) on the ferroptosis during hepatic ischemia-repferfusion (I/R), as well as the underlying specific mechanisms. We found that the administration of Liraglutide alleviated I/R-induced liver injury with less iron accumulation and lower lipid peroxidation, which was not entirely dependent on the presence of GLP-1R. Similarly, GLP-1(9-37) also exhibited these effects. Besides, both of them increased GPX4 expression and decreased COX2 expression. These effects were reversed by a High-Iron Diet. In vitro study showed similar results. In mechanism study, we found that both Liraglutide and GLP-1(9-37) treatment promoted the nuclear translocation of Nrf2 by inhibiting GSK-3β, thereby reducing lipid peroxides. Furthermore, they increased FTH and FTL expression via the SMAD159/Hepcidin pathway, which contributed to the decreased iron accumulation. In conclusion, this study determined that both Liraglutide and GLP-1(9-37) alleviated hepatic ischemia-reperfusion injury (HIRI) by suppressing ferroptosis via the activation of the GSK3β/Nrf2 pathway and the SMAD159/Hepcidin/FTH pathway.</p>","PeriodicalId":20998,"journal":{"name":"Redox Biology","volume":"79 ","pages":"103468"},"PeriodicalIF":10.7000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Redox Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.redox.2024.103468","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Ferroptosis plays a pivotal role in the pathogenesis of ischemia-reperfusion injury (IRI). Liraglutide, as a GLP-1 receptor (GLP-1R) agonist, has exhibited extensive biological effects beyond its hypoglycemic action. Recent studies have shed light on the regulatory influence of Liraglutide on ferroptosis, yet the precise underlying mechanism remains elusive. GLP-1(9-37), as a metabolite of GLP-1, has a low affinity to GLP-1R. Its effect on ferroptosis remains unknown. In this study, we investigated the effects of Liraglutide and GLP-1(9-37) on the ferroptosis during hepatic ischemia-repferfusion (I/R), as well as the underlying specific mechanisms. We found that the administration of Liraglutide alleviated I/R-induced liver injury with less iron accumulation and lower lipid peroxidation, which was not entirely dependent on the presence of GLP-1R. Similarly, GLP-1(9-37) also exhibited these effects. Besides, both of them increased GPX4 expression and decreased COX2 expression. These effects were reversed by a High-Iron Diet. In vitro study showed similar results. In mechanism study, we found that both Liraglutide and GLP-1(9-37) treatment promoted the nuclear translocation of Nrf2 by inhibiting GSK-3β, thereby reducing lipid peroxides. Furthermore, they increased FTH and FTL expression via the SMAD159/Hepcidin pathway, which contributed to the decreased iron accumulation. In conclusion, this study determined that both Liraglutide and GLP-1(9-37) alleviated hepatic ischemia-reperfusion injury (HIRI) by suppressing ferroptosis via the activation of the GSK3β/Nrf2 pathway and the SMAD159/Hepcidin/FTH pathway.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Redox Biology
Redox Biology BIOCHEMISTRY & MOLECULAR BIOLOGY-
CiteScore
19.90
自引率
3.50%
发文量
318
审稿时长
25 days
期刊介绍: Redox Biology is the official journal of the Society for Redox Biology and Medicine and the Society for Free Radical Research-Europe. It is also affiliated with the International Society for Free Radical Research (SFRRI). This journal serves as a platform for publishing pioneering research, innovative methods, and comprehensive review articles in the field of redox biology, encompassing both health and disease. Redox Biology welcomes various forms of contributions, including research articles (short or full communications), methods, mini-reviews, and commentaries. Through its diverse range of published content, Redox Biology aims to foster advancements and insights in the understanding of redox biology and its implications.
期刊最新文献
Machine learning and SHAP value interpretation for predicting comorbidity of cardiovascular disease and cancer with dietary antioxidants. Sarcopenic obesity is attenuated by E-syt1 inhibition via improving skeletal muscle mitochondrial function Liraglutide and GLP-1(9-37) alleviated hepatic ischemia-reperfusion injury by inhibiting ferroptosis via GSK3β/Nrf2 pathway and SMAD159/Hepcidin/FTH pathway. Macropinocytosis enhances foamy macrophage formation and cholesterol crystallization to activate NLRP3 inflammasome after spinal cord injury. NCOA4 linked to endothelial cell ferritinophagy and ferroptosis:a key regulator aggravate aortic endothelial inflammation and atherosclerosis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1