Guihong Shi , Yiyao Cao , Jianye Xu , Bo Chen , Xu Zhang , Yanlin Zhu , Liang Liu , Xilei Liu , Luyuan Zhang , Yuan Zhou , Shenghui Li , Guili Yang , Xiao Liu , Fanglian Chen , Xin Chen , Jianning Zhang , Shu Zhang
{"title":"Inhibition of S100A8/A9 ameliorates neuroinflammation by blocking NET formation following traumatic brain injury","authors":"Guihong Shi , Yiyao Cao , Jianye Xu , Bo Chen , Xu Zhang , Yanlin Zhu , Liang Liu , Xilei Liu , Luyuan Zhang , Yuan Zhou , Shenghui Li , Guili Yang , Xiao Liu , Fanglian Chen , Xin Chen , Jianning Zhang , Shu Zhang","doi":"10.1016/j.redox.2025.103532","DOIUrl":null,"url":null,"abstract":"<div><div>Traumatic brain injury (TBI) triggers a robust inflammatory response that is closely linked to worsened clinical outcomes. S100A8/A9, also known as calprotectin or myeloid-related protein-8/14 (MRP8/14), is an alarmin primarily secreted by activated neutrophils with potent pro-inflammatory property. In this study, we explored the roles of S100A8/A9 in modulating neuroinflammation and influencing TBI outcomes, delving into the underlying mechanisms. S100A8/A9-enriched neutrophils were present in the injured brain tissue of TBI patients, and elevated plasma levels of S100A8/A9 were correlated with poorer neurological function. Furthermore, using a TBI mouse model, we demonstrated that treatment with the selective S100A8/A9 inhibitor Paquinimod significantly mitigated neuroinflammation and neuronal death, thereby improving the prognosis of TBI mice. Mechanistically, we found that S100A8/A9, in conjunction with neutrophil activation and infiltration into the brain, enhances reactive oxygen species (ROS) production within neutrophils, accelerating PAD4-mediated neutrophil extracellular trap (NET) formation, which in turn exacerbates neuroinflammation. These findings suggest that S100A8/A9 amplifies neuroinflammatory responses by promoting NET formation in neutrophils. Inhibition of S100A8/A9 effectively attenuated NET-mediated neuroinflammation; however, when PAD4 was overexpressed in the brain using adenovirus, leading to an increased formation of NET in the brain, the anti-inflammatory effects of S100A8/A9 inhibition were markedly diminished. Further experiments with PAD4 knockout mice confirmed that the reduction of NETs could substantially alleviate S100A8/A9-driven neuroinflammation. Finally, we established that the suppression of NET formation by S100A8/A9 inhibition is primarily mediated through the AMPK/Nrf2/HO-1 signaling pathway. These findings underscore the critical pathological role of S100A8/A9 in TBI and emphasize the need for further exploration of S100A8/A9 inhibitor Paquinimod as a potential therapeutic strategy for TBI.</div></div>","PeriodicalId":20998,"journal":{"name":"Redox Biology","volume":"81 ","pages":"Article 103532"},"PeriodicalIF":10.7000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Redox Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221323172500045X","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Traumatic brain injury (TBI) triggers a robust inflammatory response that is closely linked to worsened clinical outcomes. S100A8/A9, also known as calprotectin or myeloid-related protein-8/14 (MRP8/14), is an alarmin primarily secreted by activated neutrophils with potent pro-inflammatory property. In this study, we explored the roles of S100A8/A9 in modulating neuroinflammation and influencing TBI outcomes, delving into the underlying mechanisms. S100A8/A9-enriched neutrophils were present in the injured brain tissue of TBI patients, and elevated plasma levels of S100A8/A9 were correlated with poorer neurological function. Furthermore, using a TBI mouse model, we demonstrated that treatment with the selective S100A8/A9 inhibitor Paquinimod significantly mitigated neuroinflammation and neuronal death, thereby improving the prognosis of TBI mice. Mechanistically, we found that S100A8/A9, in conjunction with neutrophil activation and infiltration into the brain, enhances reactive oxygen species (ROS) production within neutrophils, accelerating PAD4-mediated neutrophil extracellular trap (NET) formation, which in turn exacerbates neuroinflammation. These findings suggest that S100A8/A9 amplifies neuroinflammatory responses by promoting NET formation in neutrophils. Inhibition of S100A8/A9 effectively attenuated NET-mediated neuroinflammation; however, when PAD4 was overexpressed in the brain using adenovirus, leading to an increased formation of NET in the brain, the anti-inflammatory effects of S100A8/A9 inhibition were markedly diminished. Further experiments with PAD4 knockout mice confirmed that the reduction of NETs could substantially alleviate S100A8/A9-driven neuroinflammation. Finally, we established that the suppression of NET formation by S100A8/A9 inhibition is primarily mediated through the AMPK/Nrf2/HO-1 signaling pathway. These findings underscore the critical pathological role of S100A8/A9 in TBI and emphasize the need for further exploration of S100A8/A9 inhibitor Paquinimod as a potential therapeutic strategy for TBI.
期刊介绍:
Redox Biology is the official journal of the Society for Redox Biology and Medicine and the Society for Free Radical Research-Europe. It is also affiliated with the International Society for Free Radical Research (SFRRI). This journal serves as a platform for publishing pioneering research, innovative methods, and comprehensive review articles in the field of redox biology, encompassing both health and disease.
Redox Biology welcomes various forms of contributions, including research articles (short or full communications), methods, mini-reviews, and commentaries. Through its diverse range of published content, Redox Biology aims to foster advancements and insights in the understanding of redox biology and its implications.