Inhibition of S100A8/A9 ameliorates neuroinflammation by blocking NET formation following traumatic brain injury

IF 10.7 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Redox Biology Pub Date : 2025-02-05 DOI:10.1016/j.redox.2025.103532
Guihong Shi , Yiyao Cao , Jianye Xu , Bo Chen , Xu Zhang , Yanlin Zhu , Liang Liu , Xilei Liu , Luyuan Zhang , Yuan Zhou , Shenghui Li , Guili Yang , Xiao Liu , Fanglian Chen , Xin Chen , Jianning Zhang , Shu Zhang
{"title":"Inhibition of S100A8/A9 ameliorates neuroinflammation by blocking NET formation following traumatic brain injury","authors":"Guihong Shi ,&nbsp;Yiyao Cao ,&nbsp;Jianye Xu ,&nbsp;Bo Chen ,&nbsp;Xu Zhang ,&nbsp;Yanlin Zhu ,&nbsp;Liang Liu ,&nbsp;Xilei Liu ,&nbsp;Luyuan Zhang ,&nbsp;Yuan Zhou ,&nbsp;Shenghui Li ,&nbsp;Guili Yang ,&nbsp;Xiao Liu ,&nbsp;Fanglian Chen ,&nbsp;Xin Chen ,&nbsp;Jianning Zhang ,&nbsp;Shu Zhang","doi":"10.1016/j.redox.2025.103532","DOIUrl":null,"url":null,"abstract":"<div><div>Traumatic brain injury (TBI) triggers a robust inflammatory response that is closely linked to worsened clinical outcomes. S100A8/A9, also known as calprotectin or myeloid-related protein-8/14 (MRP8/14), is an alarmin primarily secreted by activated neutrophils with potent pro-inflammatory property. In this study, we explored the roles of S100A8/A9 in modulating neuroinflammation and influencing TBI outcomes, delving into the underlying mechanisms. S100A8/A9-enriched neutrophils were present in the injured brain tissue of TBI patients, and elevated plasma levels of S100A8/A9 were correlated with poorer neurological function. Furthermore, using a TBI mouse model, we demonstrated that treatment with the selective S100A8/A9 inhibitor Paquinimod significantly mitigated neuroinflammation and neuronal death, thereby improving the prognosis of TBI mice. Mechanistically, we found that S100A8/A9, in conjunction with neutrophil activation and infiltration into the brain, enhances reactive oxygen species (ROS) production within neutrophils, accelerating PAD4-mediated neutrophil extracellular trap (NET) formation, which in turn exacerbates neuroinflammation. These findings suggest that S100A8/A9 amplifies neuroinflammatory responses by promoting NET formation in neutrophils. Inhibition of S100A8/A9 effectively attenuated NET-mediated neuroinflammation; however, when PAD4 was overexpressed in the brain using adenovirus, leading to an increased formation of NET in the brain, the anti-inflammatory effects of S100A8/A9 inhibition were markedly diminished. Further experiments with PAD4 knockout mice confirmed that the reduction of NETs could substantially alleviate S100A8/A9-driven neuroinflammation. Finally, we established that the suppression of NET formation by S100A8/A9 inhibition is primarily mediated through the AMPK/Nrf2/HO-1 signaling pathway. These findings underscore the critical pathological role of S100A8/A9 in TBI and emphasize the need for further exploration of S100A8/A9 inhibitor Paquinimod as a potential therapeutic strategy for TBI.</div></div>","PeriodicalId":20998,"journal":{"name":"Redox Biology","volume":"81 ","pages":"Article 103532"},"PeriodicalIF":10.7000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Redox Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221323172500045X","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Traumatic brain injury (TBI) triggers a robust inflammatory response that is closely linked to worsened clinical outcomes. S100A8/A9, also known as calprotectin or myeloid-related protein-8/14 (MRP8/14), is an alarmin primarily secreted by activated neutrophils with potent pro-inflammatory property. In this study, we explored the roles of S100A8/A9 in modulating neuroinflammation and influencing TBI outcomes, delving into the underlying mechanisms. S100A8/A9-enriched neutrophils were present in the injured brain tissue of TBI patients, and elevated plasma levels of S100A8/A9 were correlated with poorer neurological function. Furthermore, using a TBI mouse model, we demonstrated that treatment with the selective S100A8/A9 inhibitor Paquinimod significantly mitigated neuroinflammation and neuronal death, thereby improving the prognosis of TBI mice. Mechanistically, we found that S100A8/A9, in conjunction with neutrophil activation and infiltration into the brain, enhances reactive oxygen species (ROS) production within neutrophils, accelerating PAD4-mediated neutrophil extracellular trap (NET) formation, which in turn exacerbates neuroinflammation. These findings suggest that S100A8/A9 amplifies neuroinflammatory responses by promoting NET formation in neutrophils. Inhibition of S100A8/A9 effectively attenuated NET-mediated neuroinflammation; however, when PAD4 was overexpressed in the brain using adenovirus, leading to an increased formation of NET in the brain, the anti-inflammatory effects of S100A8/A9 inhibition were markedly diminished. Further experiments with PAD4 knockout mice confirmed that the reduction of NETs could substantially alleviate S100A8/A9-driven neuroinflammation. Finally, we established that the suppression of NET formation by S100A8/A9 inhibition is primarily mediated through the AMPK/Nrf2/HO-1 signaling pathway. These findings underscore the critical pathological role of S100A8/A9 in TBI and emphasize the need for further exploration of S100A8/A9 inhibitor Paquinimod as a potential therapeutic strategy for TBI.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Redox Biology
Redox Biology BIOCHEMISTRY & MOLECULAR BIOLOGY-
CiteScore
19.90
自引率
3.50%
发文量
318
审稿时长
25 days
期刊介绍: Redox Biology is the official journal of the Society for Redox Biology and Medicine and the Society for Free Radical Research-Europe. It is also affiliated with the International Society for Free Radical Research (SFRRI). This journal serves as a platform for publishing pioneering research, innovative methods, and comprehensive review articles in the field of redox biology, encompassing both health and disease. Redox Biology welcomes various forms of contributions, including research articles (short or full communications), methods, mini-reviews, and commentaries. Through its diverse range of published content, Redox Biology aims to foster advancements and insights in the understanding of redox biology and its implications.
期刊最新文献
Inhibition of S100A8/A9 ameliorates neuroinflammation by blocking NET formation following traumatic brain injury The nonlinear cysteine redox dynamics in the i-space: A proteoform-centric theory of redox regulation FNDC5/irisin mitigates the cardiotoxic impacts of cancer chemotherapeutics by modulating ROS-dependent and -independent mechanisms Genetic interaction between oxidative stress and body mass index in a Spanish population Niraparib restricts intraperitoneal metastases of ovarian cancer by eliciting CD36-dependent ferroptosis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1