Modifying the Electronic and Magnetic Properties of ZrO2 Monolayer Through Sp Doping: A First-Principles Study

IF 2.9 4区 工程技术 Q1 MULTIDISCIPLINARY SCIENCES Advanced Theory and Simulations Pub Date : 2024-12-20 DOI:10.1002/adts.202401253
Huynh Thi Phuong Thuy, Vo Van On, J. Guerrero-Sanchez, D. M. Hoat
{"title":"Modifying the Electronic and Magnetic Properties of ZrO2 Monolayer Through Sp Doping: A First-Principles Study","authors":"Huynh Thi Phuong Thuy, Vo Van On, J. Guerrero-Sanchez, D. M. Hoat","doi":"10.1002/adts.202401253","DOIUrl":null,"url":null,"abstract":"Designing 2D materials for multifunctional applications becomes increasingly important because of the development of diminutive devices. In this work, <span data-altimg=\"/cms/asset/a4f64bb8-b16e-48ce-b341-6e68fa62c389/adts202401253-math-0002.png\"></span><img alt=\"mathematical equation\" src=\"/cms/asset/a4f64bb8-b16e-48ce-b341-6e68fa62c389/adts202401253-math-0002.png\"/> doping with non-transition metals (M@<span data-altimg=\"/cms/asset/ca1885ef-ce0b-4233-8473-c68221a9e787/adts202401253-math-0003.png\"></span><img alt=\"mathematical equation\" src=\"/cms/asset/ca1885ef-ce0b-4233-8473-c68221a9e787/adts202401253-math-0003.png\"/> systems; M = Na, Mg, Al, and Si) and nonmetals (X@<span data-altimg=\"/cms/asset/bca2c138-f2b4-4559-9ebe-11a7985ea082/adts202401253-math-0004.png\"></span><img alt=\"mathematical equation\" src=\"/cms/asset/bca2c138-f2b4-4559-9ebe-11a7985ea082/adts202401253-math-0004.png\"/> systems; X = B, C, N, and F) is proposed to modify the electronic and magnetic properties of <span data-altimg=\"/cms/asset/92e85355-1c3c-4205-b226-44d048d4a7c0/adts202401253-math-0005.png\"></span><img alt=\"mathematical equation\" src=\"/cms/asset/92e85355-1c3c-4205-b226-44d048d4a7c0/adts202401253-math-0005.png\"/> monolayer. Pristine monolayer is a 2D insulator with a large bandgap of 4.40(6.08) eV obtained from standard(hybrid)-based calculations. The monolayer is magnetized with total magnetic moments of 3.00, 2.00, and 1.00 <span data-altimg=\"/cms/asset/441344d9-1071-4af2-9a49-758989e8fe27/adts202401253-math-0006.png\"></span><img alt=\"mathematical equation\" src=\"/cms/asset/441344d9-1071-4af2-9a49-758989e8fe27/adts202401253-math-0006.png\"/> upon doping with Na, Mg, and Al metals, respectively. In these cases, magnetic properties are produced mainly by O atoms around doping sites. Meanwhile, Si doping induces no magnetism in <span data-altimg=\"/cms/asset/cb421ba6-30e4-42b3-9fad-7a9fbdfaa1b5/adts202401253-math-0007.png\"></span><img alt=\"mathematical equation\" src=\"/cms/asset/cb421ba6-30e4-42b3-9fad-7a9fbdfaa1b5/adts202401253-math-0007.png\"/> monolayer, preserving its nonmagnetic nature. However, the bandgap suffers from a large reduction of the order of 22.27%. The monolayer magnetization is also achieved by doping with B, C, N, and F atoms, where total magnetic moments of 3.00, 2.00, 1.00, and 0.97 <span data-altimg=\"/cms/asset/06fe58ee-7b90-4b17-8561-ca1d156461ac/adts202401253-math-0008.png\"></span><img alt=\"mathematical equation\" src=\"/cms/asset/06fe58ee-7b90-4b17-8561-ca1d156461ac/adts202401253-math-0008.png\"/> are obtained, respectively. For <span data-altimg=\"/cms/asset/fb813855-300f-4b10-92bc-5fd0f8625180/adts202401253-math-0009.png\"></span><img alt=\"mathematical equation\" src=\"/cms/asset/fb813855-300f-4b10-92bc-5fd0f8625180/adts202401253-math-0009.png\"/>-type doping cases, nonmetal impurities produce mainly magnetic properties, meanwhile, Zr atoms generate mainly the magnetism of F-doped <span data-altimg=\"/cms/asset/9785b21b-c9e8-4c8e-8c4f-d8651d683e23/adts202401253-math-0010.png\"></span><img alt=\"mathematical equation\" src=\"/cms/asset/9785b21b-c9e8-4c8e-8c4f-d8651d683e23/adts202401253-math-0010.png\"/> monolayer. Interestingly, feature-rich half-metallic nature (in Na@<span data-altimg=\"/cms/asset/a125f477-f4b6-4bec-9614-e49b272dd3ab/adts202401253-math-0011.png\"></span><img alt=\"mathematical equation\" src=\"/cms/asset/a125f477-f4b6-4bec-9614-e49b272dd3ab/adts202401253-math-0011.png\"/>, Mg@<span data-altimg=\"/cms/asset/9ff07f47-6f22-443e-8bf2-eb032f0277cf/adts202401253-math-0012.png\"></span><img alt=\"mathematical equation\" src=\"/cms/asset/9ff07f47-6f22-443e-8bf2-eb032f0277cf/adts202401253-math-0012.png\"/>, C@<span data-altimg=\"/cms/asset/9f96abb0-8580-420e-bbfa-aeaff7286a23/adts202401253-math-0013.png\"></span><img alt=\"mathematical equation\" src=\"/cms/asset/9f96abb0-8580-420e-bbfa-aeaff7286a23/adts202401253-math-0013.png\"/>, and F@<span data-altimg=\"/cms/asset/c89e0a13-62db-4e4a-abfe-2c2a1257da9f/adts202401253-math-0014.png\"></span><img alt=\"mathematical equation\" src=\"/cms/asset/c89e0a13-62db-4e4a-abfe-2c2a1257da9f/adts202401253-math-0014.png\"/> systems) and magnetic semiconductor nature (in Al@<span data-altimg=\"/cms/asset/1686d37e-8e5b-4830-87ae-5ca434252ce9/adts202401253-math-0015.png\"></span><img alt=\"mathematical equation\" src=\"/cms/asset/1686d37e-8e5b-4830-87ae-5ca434252ce9/adts202401253-math-0015.png\"/>, B@<span data-altimg=\"/cms/asset/caad8432-c1e5-4ba9-892a-5e42f6e3aea1/adts202401253-math-0016.png\"></span><img alt=\"mathematical equation\" src=\"/cms/asset/caad8432-c1e5-4ba9-892a-5e42f6e3aea1/adts202401253-math-0016.png\"/>, and N@<span data-altimg=\"/cms/asset/99cde10e-04a6-436c-b0e4-6e601c13c5d7/adts202401253-math-0017.png\"></span><img alt=\"mathematical equation\" src=\"/cms/asset/99cde10e-04a6-436c-b0e4-6e601c13c5d7/adts202401253-math-0017.png\"/> systems) are also obtained. By analyzing Bader charge, the roles of charge loser and charge gainer are confirmed for non-transition metal and nonmetal impurities, respectively. The results may introduce new 2D materials suitable for spintronic applications.","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"30 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Theory and Simulations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adts.202401253","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Designing 2D materials for multifunctional applications becomes increasingly important because of the development of diminutive devices. In this work, Abstract Image doping with non-transition metals (M@Abstract Image systems; M = Na, Mg, Al, and Si) and nonmetals (X@Abstract Image systems; X = B, C, N, and F) is proposed to modify the electronic and magnetic properties of Abstract Image monolayer. Pristine monolayer is a 2D insulator with a large bandgap of 4.40(6.08) eV obtained from standard(hybrid)-based calculations. The monolayer is magnetized with total magnetic moments of 3.00, 2.00, and 1.00 Abstract Image upon doping with Na, Mg, and Al metals, respectively. In these cases, magnetic properties are produced mainly by O atoms around doping sites. Meanwhile, Si doping induces no magnetism in Abstract Image monolayer, preserving its nonmagnetic nature. However, the bandgap suffers from a large reduction of the order of 22.27%. The monolayer magnetization is also achieved by doping with B, C, N, and F atoms, where total magnetic moments of 3.00, 2.00, 1.00, and 0.97 Abstract Image are obtained, respectively. For Abstract Image-type doping cases, nonmetal impurities produce mainly magnetic properties, meanwhile, Zr atoms generate mainly the magnetism of F-doped Abstract Image monolayer. Interestingly, feature-rich half-metallic nature (in Na@Abstract Image, Mg@Abstract Image, C@Abstract Image, and F@Abstract Image systems) and magnetic semiconductor nature (in Al@Abstract Image, B@Abstract Image, and N@Abstract Image systems) are also obtained. By analyzing Bader charge, the roles of charge loser and charge gainer are confirmed for non-transition metal and nonmetal impurities, respectively. The results may introduce new 2D materials suitable for spintronic applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
由于微型设备的发展,设计用于多功能应用的二维材料变得越来越重要。在这项工作中,提出了掺杂非过渡金属(M@ 系统;M = Na、Mg、Al 和 Si)和非金属(X@ 系统;X = B、C、N 和 F)来改变单层材料的电子和磁性能。原始单层是一种二维绝缘体,通过基于标准(混合)计算得到的带隙高达 4.40(6.08) eV。掺杂 Na、Mg 和 Al 金属后,单层被磁化,总磁矩分别为 3.00、2.00 和 1.00。在这些情况下,磁性主要由掺杂点周围的 O 原子产生。同时,掺杂硅会导致单层无磁性,从而保持其非磁性。然而,带隙却大幅降低了 22.27%。掺杂 B、C、N 和 F 原子也能实现单层磁化,其总磁矩分别为 3.00、2.00、1.00 和 0.97。在"-"型掺杂情况下,非金属杂质主要产生磁性,而 Zr 原子则主要产生掺杂 F 的单层磁性。有趣的是,在 Na@、Mg@、C@ 和 F@ 系统中还获得了特征丰富的半金属性(在 Al@、B@ 和 N@ 系统中)和磁性半导体性(在 Na@、Mg@、C@ 和 F@ 系统中)。通过分析巴德电荷,证实了非过渡金属杂质和非金属杂质分别扮演电荷损耗者和电荷增益者的角色。这些结果可能会引入适合自旋电子应用的新型二维材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Theory and Simulations
Advanced Theory and Simulations Multidisciplinary-Multidisciplinary
CiteScore
5.50
自引率
3.00%
发文量
221
期刊介绍: Advanced Theory and Simulations is an interdisciplinary, international, English-language journal that publishes high-quality scientific results focusing on the development and application of theoretical methods, modeling and simulation approaches in all natural science and medicine areas, including: materials, chemistry, condensed matter physics engineering, energy life science, biology, medicine atmospheric/environmental science, climate science planetary science, astronomy, cosmology method development, numerical methods, statistics
期刊最新文献
Statistical, Bottom-Up Model for Chemical Diffusion Based on Atomic Vacancy Sublattice Configurations in Layered Lithium Nickel Oxide Cathode Materials A Normalizing Flow Based Validity-Preserving Inverse-Design Model for Nanoscale MOSFETs Enhanced Adsorption Properties of Noble Metal Modified MoS2/WS2 Heterojunctions Analysis of Shannon Entropy and Quantum States of a Confined Hydrogen Atom Screened by the Hellmann Potential Modifying the Electronic and Magnetic Properties of ZrO2 Monolayer Through Sp Doping: A First-Principles Study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1