{"title":"Numerical Analysis and Artificial Neural Networks for Solving Nonlinear Tuberculosis Model in SEITR Framework","authors":"N. Jeeva, K. M. Dharmalingam","doi":"10.1002/adts.202401287","DOIUrl":null,"url":null,"abstract":"This study investigates an epidemiological model of tuberculosis dynamics by classifying the total population into five distinct compartments: susceptible, exposed, infected, treated, and recovered. To solve the system of nonlinear differential equations and obtain approximate solutions for the <span data-altimg=\"/cms/asset/b2e4348d-103a-4955-b89b-15f6540438a1/adts202401287-math-0001.png\"></span><mjx-container ctxtmenu_counter=\"1\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\" location=\"graphic/adts202401287-math-0001.png\"><mjx-semantics><mjx-mrow data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"0,1,2,3,4\" data-semantic-content=\"5,6,7,8\" data-semantic- data-semantic-role=\"implicit\" data-semantic-speech=\"upper S upper E upper I upper T upper R\" data-semantic-type=\"infixop\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"9\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,\" data-semantic-parent=\"9\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"9\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,\" data-semantic-parent=\"9\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"9\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,\" data-semantic-parent=\"9\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"9\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,\" data-semantic-parent=\"9\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"9\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml display=\"inline\" unselectable=\"on\"><math altimg=\"urn:x-wiley:25130390:media:adts202401287:adts202401287-math-0001\" display=\"inline\" location=\"graphic/adts202401287-math-0001.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow data-semantic-=\"\" data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"0,1,2,3,4\" data-semantic-content=\"5,6,7,8\" data-semantic-role=\"implicit\" data-semantic-speech=\"upper S upper E upper I upper T upper R\" data-semantic-type=\"infixop\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"9\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">S</mi><mo data-semantic-=\"\" data-semantic-added=\"true\" data-semantic-operator=\"infixop,\" data-semantic-parent=\"9\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"></mo><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"9\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">E</mi><mo data-semantic-=\"\" data-semantic-added=\"true\" data-semantic-operator=\"infixop,\" data-semantic-parent=\"9\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"></mo><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"9\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">I</mi><mo data-semantic-=\"\" data-semantic-added=\"true\" data-semantic-operator=\"infixop,\" data-semantic-parent=\"9\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"></mo><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"9\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">T</mi><mo data-semantic-=\"\" data-semantic-added=\"true\" data-semantic-operator=\"infixop,\" data-semantic-parent=\"9\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"></mo><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"9\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">R</mi></mrow>$SEITR$</annotation></semantics></math></mjx-assistive-mml></mjx-container> tuberculosis model, three analytical methods are utilized: the transcendental-exponential type proposed method (PNM), the Homotopy perturbation method (HPM), and the higher-order inverse polynomial method (HOIPM). Additionally, the study examines the stochastic performance of artificial neural networks trained using the Levenberg–Marquardt algorithm (ANNs-LMB) to offer a comprehensive evaluation of the tuberculosis model. The predictions generated by ANNs-LMB provide valuable benefits for researchers, significantly improving their understanding of infectious tuberculosis dynamics. Furthermore, error estimations demonstrate that the PNM, HOIPM, and ANNs-LMB methods are highly effective in generating accurate solutions, closely matching those obtained from the Runge–Kutta solver, and surpassing the performance of HPM. These methods exhibit strong reliability and efficiency, making them innovative tools for addressing tuberculosis models and simulating epidemiological challenges. Moreover, the analysis of key parameters, including contact rate, infection rate, tuberculosis-related mortality rate, reinfection rate, and treatment rate, provides crucial insights into the model's behavior and dynamics, paving the way for future research and effective intervention strategies.","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"35 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Theory and Simulations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adts.202401287","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates an epidemiological model of tuberculosis dynamics by classifying the total population into five distinct compartments: susceptible, exposed, infected, treated, and recovered. To solve the system of nonlinear differential equations and obtain approximate solutions for the tuberculosis model, three analytical methods are utilized: the transcendental-exponential type proposed method (PNM), the Homotopy perturbation method (HPM), and the higher-order inverse polynomial method (HOIPM). Additionally, the study examines the stochastic performance of artificial neural networks trained using the Levenberg–Marquardt algorithm (ANNs-LMB) to offer a comprehensive evaluation of the tuberculosis model. The predictions generated by ANNs-LMB provide valuable benefits for researchers, significantly improving their understanding of infectious tuberculosis dynamics. Furthermore, error estimations demonstrate that the PNM, HOIPM, and ANNs-LMB methods are highly effective in generating accurate solutions, closely matching those obtained from the Runge–Kutta solver, and surpassing the performance of HPM. These methods exhibit strong reliability and efficiency, making them innovative tools for addressing tuberculosis models and simulating epidemiological challenges. Moreover, the analysis of key parameters, including contact rate, infection rate, tuberculosis-related mortality rate, reinfection rate, and treatment rate, provides crucial insights into the model's behavior and dynamics, paving the way for future research and effective intervention strategies.
期刊介绍:
Advanced Theory and Simulations is an interdisciplinary, international, English-language journal that publishes high-quality scientific results focusing on the development and application of theoretical methods, modeling and simulation approaches in all natural science and medicine areas, including:
materials, chemistry, condensed matter physics
engineering, energy
life science, biology, medicine
atmospheric/environmental science, climate science
planetary science, astronomy, cosmology
method development, numerical methods, statistics