{"title":"First-Principles Study on Introducing Fluorine Doping and Sulfur Vacancy into MoS2 for Advanced Lithium Storage","authors":"Zhiling Xu, Yanbing Liao, Kaihui Lin, Jiayi Guan, Yuda Lin, Liting Qiu","doi":"10.1002/adts.202401101","DOIUrl":null,"url":null,"abstract":"MoS<sub>2</sub>, a potential anode material for lithium ion batteries (LIBs), boasts high specific capacity, a unique layered structure, and large interlayer spacing, but struggles with poor conductivity and volume effect. Starting from improving the intrinsic electronic conductivity of MoS<sub>2</sub>, this study innovatively introduces F-doping and sulfur vacancies into MoS<sub>2</sub> crystals to form F-MoS<sub>2-x</sub> crystals, and investigates its structural features and LIBs applications through first-principle calculations. The rationality and stability of F-MoS<sub>2−x</sub> are calculated by phonon spectra. The density of states calculations reveals that F-doping and sulfur vacancies effectively alter MoS<sub>2</sub>'s electronic state, reducing its intrinsic band-gap and confirming F-MoS<sub>2-x</sub>'s superior electronic conductivity theoretically. They also significantly decrease lithium-ion diffusion resistance on F-MoS<sub>2-x</sub>'s surface, potentially enabling high-rate performance. Besides, the calculation of adsorption energy and differential charge density reveals strong adsorption between F-MoS<sub>2-x</sub> and lithium ions, which favors long-term cycle stability. Notably, with each F-MoS<sub>2-x</sub> molecule storing up to 4.5 Li, corresponding to a theoretical capacity of 769 mAh g<sup>−1</sup>, higher than MoS<sub>2</sub>'s 670 mAh g<sup>−1</sup>. This study provides a meaningful reference value for the modification of MoS<sub>2</sub>.","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"63 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Theory and Simulations","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adts.202401101","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
MoS2, a potential anode material for lithium ion batteries (LIBs), boasts high specific capacity, a unique layered structure, and large interlayer spacing, but struggles with poor conductivity and volume effect. Starting from improving the intrinsic electronic conductivity of MoS2, this study innovatively introduces F-doping and sulfur vacancies into MoS2 crystals to form F-MoS2-x crystals, and investigates its structural features and LIBs applications through first-principle calculations. The rationality and stability of F-MoS2−x are calculated by phonon spectra. The density of states calculations reveals that F-doping and sulfur vacancies effectively alter MoS2's electronic state, reducing its intrinsic band-gap and confirming F-MoS2-x's superior electronic conductivity theoretically. They also significantly decrease lithium-ion diffusion resistance on F-MoS2-x's surface, potentially enabling high-rate performance. Besides, the calculation of adsorption energy and differential charge density reveals strong adsorption between F-MoS2-x and lithium ions, which favors long-term cycle stability. Notably, with each F-MoS2-x molecule storing up to 4.5 Li, corresponding to a theoretical capacity of 769 mAh g−1, higher than MoS2's 670 mAh g−1. This study provides a meaningful reference value for the modification of MoS2.
期刊介绍:
Advanced Theory and Simulations is an interdisciplinary, international, English-language journal that publishes high-quality scientific results focusing on the development and application of theoretical methods, modeling and simulation approaches in all natural science and medicine areas, including:
materials, chemistry, condensed matter physics
engineering, energy
life science, biology, medicine
atmospheric/environmental science, climate science
planetary science, astronomy, cosmology
method development, numerical methods, statistics