Research into the Influence of Filtration Media Microstructure on Oil–Water Separation Performance

IF 3.7 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Langmuir Pub Date : 2024-12-20 DOI:10.1021/acs.langmuir.4c04749
Xiaoyan Liu, Min Lu, Caihua Wang, Guoqiang Xiao, Bao Wang, Lei Chen
{"title":"Research into the Influence of Filtration Media Microstructure on Oil–Water Separation Performance","authors":"Xiaoyan Liu, Min Lu, Caihua Wang, Guoqiang Xiao, Bao Wang, Lei Chen","doi":"10.1021/acs.langmuir.4c04749","DOIUrl":null,"url":null,"abstract":"Oil–water separation materials with specialized wettability have garnered significant attention in the field of oil–water separation due to the advantages of simple use and no secondary pollution. However, the adsorptive contamination of the filter surface by impurity phases and surfactants can cause a shift in the wettability of the filter surface. For efficient oil–water separation and improved resistance to adherent contamination on the oil–water separation membrane surface, herein, superwetted Cu nanofilms and smooth hydrophobic surfaces were prepared on SSM substrates by one-step electrodeposition and immersion methods, respectively. For water-in-oil/oil-in-water emulsions, nano-Cu has high separation efficiency. Experimentally, it was analyzed that the smaller spacing between the pores of the mesh membrane and the micro-nanostructures makes the separation effect better, but the flux will be reduced accordingly. By studying the separation images during the actual separation process through optical microscopy, it was found that the increase in the efficiency of the mesh membrane during the oil–water separation process and the decrease in the flux were due to the impurity phases aggregating and clogging the pores during the separation process to achieve a reduction in the pore size and the spacing of the micro-nanostructures. And further verification of the stability and mechanism correctness of the nano-Cu mesh film was conducted using cyclic experiments. The surface adhesion mechanism of filtration materials was analyzed by studying the phenomenon of water droplet adhesion on different mesh membranes and the ratio of adhesion. The research findings provide a comprehensive analysis of oil–water separation materials, focusing on both separation effectiveness and antiadhesion properties. This study offers new insights into the design of efficient oil–water separation materials and holds significant implications for advancing the practical application of oil–water separation membranes.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"79 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.4c04749","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Oil–water separation materials with specialized wettability have garnered significant attention in the field of oil–water separation due to the advantages of simple use and no secondary pollution. However, the adsorptive contamination of the filter surface by impurity phases and surfactants can cause a shift in the wettability of the filter surface. For efficient oil–water separation and improved resistance to adherent contamination on the oil–water separation membrane surface, herein, superwetted Cu nanofilms and smooth hydrophobic surfaces were prepared on SSM substrates by one-step electrodeposition and immersion methods, respectively. For water-in-oil/oil-in-water emulsions, nano-Cu has high separation efficiency. Experimentally, it was analyzed that the smaller spacing between the pores of the mesh membrane and the micro-nanostructures makes the separation effect better, but the flux will be reduced accordingly. By studying the separation images during the actual separation process through optical microscopy, it was found that the increase in the efficiency of the mesh membrane during the oil–water separation process and the decrease in the flux were due to the impurity phases aggregating and clogging the pores during the separation process to achieve a reduction in the pore size and the spacing of the micro-nanostructures. And further verification of the stability and mechanism correctness of the nano-Cu mesh film was conducted using cyclic experiments. The surface adhesion mechanism of filtration materials was analyzed by studying the phenomenon of water droplet adhesion on different mesh membranes and the ratio of adhesion. The research findings provide a comprehensive analysis of oil–water separation materials, focusing on both separation effectiveness and antiadhesion properties. This study offers new insights into the design of efficient oil–water separation materials and holds significant implications for advancing the practical application of oil–water separation membranes.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Langmuir
Langmuir 化学-材料科学:综合
CiteScore
6.50
自引率
10.30%
发文量
1464
审稿时长
2.1 months
期刊介绍: Langmuir is an interdisciplinary journal publishing articles in the following subject categories: Colloids: surfactants and self-assembly, dispersions, emulsions, foams Interfaces: adsorption, reactions, films, forces Biological Interfaces: biocolloids, biomolecular and biomimetic materials Materials: nano- and mesostructured materials, polymers, gels, liquid crystals Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do? Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*. This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).
期刊最新文献
Jute–Copper Nanocomposite Embedded PSf Membrane for Sustainable and Efficient Heavy Metal Removal from Water Sources Evolution of Gas Desorption Hysteresis in Coal under Negative-Pressure Condition: Attenuation Mechanism and an Intuitive Index Electrospun Poly(vinyl Alcohol)/Chitin Nanofiber Membrane as a Sustainable Lithium-Ion Battery Separator Advanced Liquid-Entrapped Nanosurfaces for Optimized Atmospheric Water Harvesting Host–Guest Structure Enabling Electrocatalytic Hydrogen Evolution Performance by POM@TM-BDC Composites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1