Max Eberle, Jamie T. Wasylenko, Drazen Kostelac, Sarah Kiehna, Adam Schellinger, Zhaorui Zhang, Jason D. Ehrick
{"title":"A Modern Framework for Analytical Procedure Development and Lifecycle Management Based on ICH Q14 Principles","authors":"Max Eberle, Jamie T. Wasylenko, Drazen Kostelac, Sarah Kiehna, Adam Schellinger, Zhaorui Zhang, Jason D. Ehrick","doi":"10.1021/acs.analchem.4c04521","DOIUrl":null,"url":null,"abstract":"This paper explores the current analytical method validation practices, mainly derived from the International Council for Harmonization of Technical Requirements for Pharmaceuticals for Human Use (ICH) Q2(R1) guidelines (2005) and presents a strategy for adopting the latest guidelines for analytical chemistry in the pharmaceutical industry (ICH Q14/Q2(R2), USP ⟨1220⟩). These documents emphasize a lifecycle approach to method development, qualification, and validation, aligning with the holistic, risk-based control strategy central to future submission dossier structures. Key elements of the enhanced approach described in ICH Q14, including Analytical Target Profile (ATP), Knowledge Management, Analytical Risk Assessment, and Performance Monitoring, are discussed and integrated into a clear Analytical Quality by Design (AQbD) framework for analytical procedure development and lifecycle management. When leveraging a risk-based approach, it is necessary to balance between the benefits of post-approval flexibility and the resource investments required for implementation of the additional elements. Over time, the proposed strategy should streamline analytical development, result in well-understood analytical methods, and simplify lifecycle management.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"25 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c04521","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This paper explores the current analytical method validation practices, mainly derived from the International Council for Harmonization of Technical Requirements for Pharmaceuticals for Human Use (ICH) Q2(R1) guidelines (2005) and presents a strategy for adopting the latest guidelines for analytical chemistry in the pharmaceutical industry (ICH Q14/Q2(R2), USP ⟨1220⟩). These documents emphasize a lifecycle approach to method development, qualification, and validation, aligning with the holistic, risk-based control strategy central to future submission dossier structures. Key elements of the enhanced approach described in ICH Q14, including Analytical Target Profile (ATP), Knowledge Management, Analytical Risk Assessment, and Performance Monitoring, are discussed and integrated into a clear Analytical Quality by Design (AQbD) framework for analytical procedure development and lifecycle management. When leveraging a risk-based approach, it is necessary to balance between the benefits of post-approval flexibility and the resource investments required for implementation of the additional elements. Over time, the proposed strategy should streamline analytical development, result in well-understood analytical methods, and simplify lifecycle management.
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.